Which Radiation Type Has the Most Energy: Alpha, Beta, or Gamma?

AI Thread Summary
Gamma photons possess the highest energy, generally exceeding 100 keV, making them the most energetic radiation type. Alpha particles, while having a lower energy range, exhibit the highest ionizing power due to their mass, typically around 5 MeV. Beta particles have less energy and ionizing power compared to alpha particles. The energy levels of these radiation types can overlap, complicating direct comparisons. Overall, typical energy measurements suggest that alpha energy is often greater than beta, which in turn is greater than gamma.
AN630078
Messages
242
Reaction score
25
Homework Statement
I have a question which is probably very straightforward but I am a little uncertain.

List from largest to smallest in terms of energy an alpha particle, a beta particle and a photon of gamma radiation.
Relevant Equations
alpha, beta, gamma
Well, gamma photons are pure energy, so surely a gamma photon would have the most energy since gamma-ray photons generally have energies greater than 100 keV. An alpha particle has the highest ionising power of the three on account of its mass, it roughly has a kinetic energy of 5 MeV, whereas beta particles are smaller and have a lesser ionising power i.e less energy.

So would the correct order be gamma, alpha, beta?
 
Physics news on Phys.org
For the two massive particles you have only considered KE, which would rather depend on the source. An interstellar alpha particle could have enormous speed.
Perhaps you are supposed to consider just their rest energies?
 
It is hard to compare the energy between those rays in general as each radiation's range of energy can overlap each others. Yet, each type of radiation appears more frequently in nature in specific ranges of energy - "typical" energy - and comparing between those values can give us some insights:
For gamma rays: typically 100 keV ~ 1 MeV
For beta ray: typically around 1MeV
For alpha decay: typically around 5 MeV
So, if we were to measure a random set of gamma, beta and alpha rays, there is a high chance that E_alpha > E_beta > E_gamma
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top