MHB Which test do we have to apply at each case?

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Apply Test
Click For Summary
The discussion covers various tests for determining the convergence or divergence of series, including the Trivial, Ratio, Root, Leibniz, Comparison, and Integral tests. Specific series examples are analyzed, revealing that the first two series are geometric and converge due to their ratios being less than one. The third series diverges since its ratio exceeds one, while the fourth series converges as it meets the criteria for a geometric series with a negative ratio. The participants confirm the conditions under which these tests apply, emphasizing the importance of understanding the properties of geometric series. The conversation concludes with a consensus on the convergence of the analyzed series.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

To check the convergence or divergence of series there are the following tests:

  • Trivial test
    If a series $\sum a_k$ converges, then the sequence $a_k$ is a zero-sequence.
    With this test we can just prove the divergence, but not in general the convergence of a series. \
  • Ratiom test
    If $\lim \sup |\frac{a_{n+1}}{a_n}|<1$, then the series converges. \\
    If $\lim \sup |\frac{a_{n+1}}{a_n}|>1$, then the series diverges. \\
    If $\lim \sup |\frac{a_{n+1}}{a_n}|=1$, then this test doesn't tell anything about the convergence/divergence.
  • Root test
    The series $\sum a_k$ converges absolutely, if $\lim_{k\rightarrow \infty}\sqrt[k]{|a_k|}<1$.
    For $\lim_{k\rightarrow \infty}\sqrt[k]{|a_k|}>1$ the divergence of the series is implied.
  • Leibniz test
    If $(a_k)$ is a monotone decreasing zero-sequence, then the alternating seriesn$\sum (-1)^ka_k$ converges.
  • Comparison test
    If $0 \leq |a_k|\leq b_k$ from some $k_0$ and $\sum b_k$converges, then the series $\sum a_k$ converges.
    If $0 \leq |a_k|\leq b_k$ from some $k_0$ and $\sum a_k$ diverges, then the series $\sum b_k$ diverges.
  • Integral test
    let $f : [1, \infty ) \rightarrow [0, \infty )$ be monotone decreasing. then the series $\sum_{k=1}^{\infty} f(k)$ converges iff the integral $\int_1^{\infty} f(x)ds$ exists.

right? (Wondering) How do we know which test we have to apply at the following cases?

  1. $\displaystyle{\sum_{k=1}^{\infty}\frac{1}{5^k}}$
  2. $\displaystyle{\sum_{n=0}^{\infty}\frac{2^{3n+1}}{9^n}}$
  3. $\displaystyle{\sum_{k=2}^{\infty}1,0001^k}$
  4. $\displaystyle{\sum_{k=0}^{\infty}\frac{(-1)^k}{a^k}}$

(Wondering)
 
Physics news on Phys.org
mathmari said:
Hey! :o

To check the convergence or divergence of series there are the following tests:

  • Trivial test
    If a series $\sum a_k$ converges, then the sequence $a_k$ is a zero-sequence.
    With this test we can just prove the divergence, but not in general the convergence of a series. \
  • Ratiom test
    If $\lim \sup |\frac{a_{n+1}}{a_n}|<1$, then the series converges. \\
    If $\lim \sup |\frac{a_{n+1}}{a_n}|>1$, then the series diverges. \\
    If $\lim \sup |\frac{a_{n+1}}{a_n}|=1$, then this test doesn't tell anything about the convergence/divergence.
  • Root test
    The series $\sum a_k$ converges absolutely, if $\lim_{k\rightarrow \infty}\sqrt[k]{|a_k|}<1$.
    For $\lim_{k\rightarrow \infty}\sqrt[k]{|a_k|}>1$ the divergence of the series is implied.
  • Leibniz test
    If $(a_k)$ is a monotone decreasing zero-sequence, then the alternating seriesn$\sum (-1)^ka_k$ converges.
  • Comparison test
    If $0 \leq |a_k|\leq b_k$ from some $k_0$ and $\sum b_k$converges, then the series $\sum a_k$ converges.
    If $0 \leq |a_k|\leq b_k$ from some $k_0$ and $\sum a_k$ diverges, then the series $\sum b_k$ diverges.
  • Integral test
    let $f : [1, \infty ) \rightarrow [0, \infty )$ be monotone decreasing. then the series $\sum_{k=1}^{\infty} f(k)$ converges iff the integral $\int_1^{\infty} f(x)ds$ exists.

right? (Wondering) How do we know which test we have to apply at the following cases?

  1. $\displaystyle{\sum_{k=1}^{\infty}\frac{1}{5^k}}$
  2. $\displaystyle{\sum_{n=0}^{\infty}\frac{2^{3n+1}}{9^n}}$
  3. $\displaystyle{\sum_{k=2}^{\infty}1,0001^k}$
  4. $\displaystyle{\sum_{k=0}^{\infty}\frac{(-1)^k}{a^k}}$

(Wondering)

The first one can be written as $\displaystyle \begin{align*} \sum_{k = 1}^{\infty}{\frac{1}{5^k}} = \sum_{k = 1}^{\infty}{ \left( \frac{1}{5} \right) ^k } \end{align*}$, a geometric series. When does a geometric series converge?

The second one can be written as

$\displaystyle \begin{align*} \sum_{n = 0}^{\infty}{ \frac{2^{3n+1}}{9^n} } &= 2\sum_{n = 0}^{\infty}{\frac{2^{3n}}{9^n}} \\ &= 2\sum_{n = 0}^{\infty}{ \frac{\left( 2^3 \right) ^n}{9^n} } \\ &= 2\sum_{n=0}^{\infty}{ \frac{8^n}{9^n} } \\ &= 2\sum_{n = 0}^{\infty}{ \left( \frac{8}{9} \right) ^n } \end{align*}$

again, reduced to determining if a geometric series converges.The other two are also geometric series.
 
Prove It said:
The first one can be written as $\displaystyle \begin{align*} \sum_{k = 1}^{\infty}{\frac{1}{5^k}} = \sum_{k = 1}^{\infty}{ \left( \frac{1}{5} \right) ^k } \end{align*}$, a geometric series. When does a geometric series converge?

The second one can be written as

$\displaystyle \begin{align*} \sum_{n = 0}^{\infty}{ \frac{2^{3n+1}}{9^n} } &= 2\sum_{n = 0}^{\infty}{\frac{2^{3n}}{9^n}} \\ &= 2\sum_{n = 0}^{\infty}{ \frac{\left( 2^3 \right) ^n}{9^n} } \\ &= 2\sum_{n=0}^{\infty}{ \frac{8^n}{9^n} } \\ &= 2\sum_{n = 0}^{\infty}{ \left( \frac{8}{9} \right) ^n } \end{align*}$

again, reduced to determining if a geometric series converges.The other two are also geometric series.

We have that for $-1<q<1$ the geometric series converges and is equal to $\displaystyle{\sum_{k=0}^{\infty}q^k=\frac{1}{1-q}}$.

So, we have the following:
  1. $\displaystyle {\sum_{k = 1}^{\infty}{\frac{1}{5^k}} = \sum_{k = 1}^{\infty}{ \left( \frac{1}{5} \right) ^k } =\sum_{k = 0}^{\infty}{ \left( \frac{1}{5} \right) ^k }-{ \left( \frac{1}{5} \right) ^0 }=\sum_{k = 0}^{\infty}{ \left( \frac{1}{5} \right) ^k }-1\overset{ -1<\frac{1}{5}<1 }{ = } \frac{1}{1-\frac{1}{5}}-1=\frac{1}{\frac{4}{5}}-1=\frac{5}{4}-1=\frac{1}{4}}$
  2. $\displaystyle{ \sum_{n = 0}^{\infty}{ \frac{2^{3n+1}}{9^n} } = 2\sum_{n = 0}^{\infty}{ \left( \frac{8}{9} \right) ^n }}\overset{ -1<\frac{8}{9}<1 }{ = }2\frac{1}{1-\frac{8}{9}}=2\frac{1}{\frac{1}{9}}=18$
  3. SInce $1,0001>1$ we have the series does not converge, right? (Wondering)
  4. $\displaystyle{\sum_{k=0}^{\infty}\frac{(-1)^k}{a^k}=\sum_{k=0}^{\infty}\left (\frac{-1}{a}\right )^k}$
    Since $a>1$ we have that $0<\frac{1}{a}<1 \Rightarrow -1<-\frac{1}{a}<0$, right? (Wondering)
    Therefore, $\displaystyle{\sum_{k=0}^{\infty}\frac{(-1)^k}{a^k}=\frac{1}{1+\frac{1}{a}}=\frac{a}{a+1}}$
 
mathmari said:
We have that for $-1<q<1$ the geometric series converges and is equal to $\displaystyle{\sum_{k=0}^{\infty}q^k=\frac{1}{1-q}}$.

So, we have the following:
  1. $\displaystyle {\sum_{k = 1}^{\infty}{\frac{1}{5^k}} = \sum_{k = 1}^{\infty}{ \left( \frac{1}{5} \right) ^k } =\sum_{k = 0}^{\infty}{ \left( \frac{1}{5} \right) ^k }-{ \left( \frac{1}{5} \right) ^0 }=\sum_{k = 0}^{\infty}{ \left( \frac{1}{5} \right) ^k }-1\overset{ -1<\frac{1}{5}<1 }{ = } \frac{1}{1-\frac{1}{5}}-1=\frac{1}{\frac{4}{5}}-1=\frac{5}{4}-1=\frac{1}{4}}$
  2. $\displaystyle{ \sum_{n = 0}^{\infty}{ \frac{2^{3n+1}}{9^n} } = 2\sum_{n = 0}^{\infty}{ \left( \frac{8}{9} \right) ^n }}\overset{ -1<\frac{8}{9}<1 }{ = }2\frac{1}{1-\frac{8}{9}}=2\frac{1}{\frac{1}{9}}=18$
  3. SInce $1,0001>1$ we have the series does not converge, right? (Wondering)
  4. $\displaystyle{\sum_{k=0}^{\infty}\frac{(-1)^k}{a^k}=\sum_{k=0}^{\infty}\left (\frac{-1}{a}\right )^k}$
    Since $a>1$ we have that $0<\frac{1}{a}<1 \Rightarrow -1<-\frac{1}{a}<0$, right? (Wondering)
    Therefore, $\displaystyle{\sum_{k=0}^{\infty}\frac{(-1)^k}{a^k}=\frac{1}{1+\frac{1}{a}}=\frac{a}{a+1}}$

The first three are correct.

For the fourth, how do you know a > 1?
 
Prove It said:
For the fourth, how do you know a > 1?

Ah, this is given. I forgot to mention it in my first post. Sorry. (Blush)

mathmari said:
Since $a>1$ we have that $0<\frac{1}{a}<1 \Rightarrow -1<-\frac{1}{a}<0$

This implication is correct, isn't it? (Wondering)
 
mathmari said:
Ah, this is given. I forgot to mention it in my first post. Sorry. (Blush)
This implication is correct, isn't it? (Wondering)

I agree that $\displaystyle \begin{align*} a > 1 \end{align*}$ implies that $\displaystyle \begin{align*} -1 < -\frac{1}{ a} < 0 \end{align*}$, and the geometric series to converge, we also require that $\displaystyle \begin{align*} \left| r \right| = \left| -\frac{1}{a} \right| < 1 \end{align*}$, which we can obviously see it does. So that means the series will converge.
 
Prove It said:
I agree that $\displaystyle \begin{align*} a > 1 \end{align*}$ implies that $\displaystyle \begin{align*} -1 < -\frac{1}{ a} < 0 \end{align*}$, and the geometric series to converge, we also require that $\displaystyle \begin{align*} \left| r \right| = \left| -\frac{1}{a} \right| < 1 \end{align*}$, which we can obviously see it does. So that means the series will converge.

Ok... Thank you very much! (Mmm)