MHB Why Are Maximal Elements in Omega Prime Ideals?

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Prime
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading D.G. Northcott's book: Lessons on Rings and Modules and Multiplicities.

I am currently studying Chapter 2: Prime Ideals and Primary Submodules.

I need help with an aspect of Proposition 3 in Chapter 2.

Proposition 3 and its proof read as follows:

View attachment 3680
View attachment 3681

In the last sentence of the statement of Proposition 3, we read the following:

" ... ... Then $$\Omega$$, together with the relation $$\le $$ is a non-empty inductive system and all its maximal elements are prime ideals."My question/problem is as follows:

$$\Omega$$ is a set of ideals and so its maximal elements would be maximal ideals ... ... BUT ... in the Corollary to Proposition 1 in this chapter, Northcott has already shown that "Every maximal ideal is a prime ideal" ... SO ... it appears that this part of Proposition 3 is unnecessary/redundant ...

But this makes me feel I am missing something or misunderstanding something ... ...

Can someone please clarify this situation ... that is why is Northcott apparently proving that all maximal ideals are prime ideals twice over ... ?

Hope someone can help ... ...
In order for MHB members to fully understand the above, I am providing Proposition 1 and its Corollary, as follows:

View attachment 3682
View attachment 3683
 
Physics news on Phys.org
"Maximal element" with respect to the ordering $\leq$, is different from saying "maximal ideal". The confusion is that the word 'maximal', is being used in two different contexts.
 
ThePerfectHacker said:
"Maximal element" with respect to the ordering $\leq$, is different from saying "maximal ideal". The confusion is that the word 'maximal', is being used in two different contexts.
Thanks for your help ThePerfectHacker ... but i think I need a bit more help in order to fully understand your statement ...

Since $$\Omega$$ is a set of ideals, surely then the maximal elements in $$\Omega$$ are maximal ideals ...

Can you help further?

Thanks again for your help,

Peter
 
Peter said:
Thanks for your help ThePerfectHacker ... but i think I need a bit more help in order to fully understand your statement ...

Since $$\Omega$$ is a set of ideals, surely then the maximal elements in $$\Omega$$ are maximal ideals ...

The theorem says that if $\Omega$ is a set of ideals where $\leq$ simply means containment then all the maximal elements are prime ideals.

What is a "maximal element"? It is an ideal $I \in \Omega$ with the property that $I$ is not contained in any other ideal (other than itself) from $\Omega$. We say that $I$ is a "maximal element with respect the ordering $\leq$" i.e. it is not contained in anything else.

This is not the same as saying $I$ is a "maximal ideal", because a maximal ideal is an ideal not contained in any ideal. The property of $I$ is that it is not contained in any ideal of $\Omega$. It is a different concept.
 
ThePerfectHacker said:
The theorem says that if $\Omega$ is a set of ideals where $\leq$ simply means containment then all the maximal elements are prime ideals.

What is a "maximal element"? It is an ideal $I \in \Omega$ with the property that $I$ is not contained in any other ideal (other than itself) from $\Omega$. We say that $I$ is a "maximal element with respect the ordering $\leq$" i.e. it is not contained in anything else.

This is not the same as saying $I$ is a "maximal ideal", because a maximal ideal is an ideal not contained in any ideal. The property of $I$ is that it is not contained in any ideal of $\Omega$. It is a different concept.
Thanks so so much for the clarification ... still reflecting on what you have written ... ...

Thanks again for your help ...

Peter
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top