MHB Why Are Nilpotent Elements Significant in Ring Theory?

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Elements Set
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I am looking at the following exercise:

An element $r\in R$ is called nilpotent if $r^n=0$ for some integer $n=1,2, \dots $.
  1. Show that if $r$ is nilpotent then $1-r$ is invertible in $R$.
  2. Show that if $R$ is commutative then the set $N(R)$ of nilpotent elements is an ideal of $R$. Give an example where that is not true when the ring is not commutative.
  3. Show that $N(\mathbb{Z}_m)=0$ if and only if $m$ is not divided by a square of any prime.
I have done the following:

  1. Since $r\in R$ is nilpotent we have that $r^n=0$ for some $n=1, 2, \dots $.
    Then $$1=1-r^n=(1-r)(r^{n-1}+\dots +1)$$
    So, $1-r$ is invertible in $R$.

    $$$$
  2. To show that $N(R)$ is an ideal of $R$ we have to show that $N(R)$ is a left and a right ideal, right? (Wondering)
    So, we have to show that $ra\in N(R)$ and $ar\in N(R)$, for $r\in R$ and $a\in N(R)$.
    Since $R$ is commutative, we have that $(ra)^n=r^na^n$. Since $a\in N(R)$ we have that $a^n=0$. Therefore, $(ra)^n=0$.
    Since $R$ is commutative, we have that $(ar)^n=a^nr^n$. Since $a\in N(R)$ we have that $a^n=0$. Therefore, $(ar)^n=0$.
    So, $N(R)$ is an ideal of $R$.

    Is this correct? (Wondering)

    How could we find an example where that is not true when the ring is not commutative? (Wondering)

    $$$$
  3. Suppose that $N(\mathbb{Z}_m)=0$, then $r^n\neq 0$, for all $n\in \mathbb{N}$, where $r\in \mathbb{Z}_m$, right? (Wondering)
    How could we continue? (Wondering)
 
Physics news on Phys.org
Your proof for 2 is missing a crucial ingredient: you have to show that if $a$ is nilpotent that $a+b$ is also nilpotent (its obvious that $-a$ is nilpotent, since if:

$a^n = 0$, then $(-a)^n = (-1)^na^n = (-1)^n0 = 0$).

The trick to this is to use the binomial theorem, which holds when $R$ is commutative.

For a non-commutative example, look at $\text{Mat}_2(\Bbb F_2)$. This has but 16 elements, and you can straight-away eliminate the 6 invertible elements (why?). Show there exists two nilpotent matrices with a non-nilpotent sum, so they cannot form an ideal.

The key to number 3 lies with $m$, not $n$. You want to show:

a) If $m$ is square-free, then $r^n = 0 \implies r = 0$ (mod $m$). Try factoring $r$ into primes.

b) If $p^2|m$ for a prime $p$, what can you say about $r = \dfrac{m}{p}$?
 
Deveno said:
Your proof for 2 is missing a crucial ingredient: you have to show that if $a$ is nilpotent that $a+b$ is also nilpotent (its obvious that $-a$ is nilpotent, since if:

$a^n = 0$, then $(-a)^n = (-1)^na^n = (-1)^n0 = 0$).

The trick to this is to use the binomial theorem, which holds when $R$ is commutative.

Why do we have to show also that $a+b$ and $-a$ are nilpotent? (Wondering)
I got stuck right now...

Deveno said:
For a non-commutative example, look at $\text{Mat}_2(\Bbb F_2)$. This has but 16 elements, and you can straight-away eliminate the 6 invertible elements (why?).

I haven't really understood that... (Wondering)

Deveno said:
The key to number 3 lies with $m$, not $n$. You want to show:

a) If $m$ is square-free, then $r^n = 0 \implies r = 0$ (mod $m$). Try factoring $r$ into primes.

b) If $p^2|m$ for a prime $p$, what can you say about $r = \dfrac{m}{p}$?

a) Suppose that $m$ is square-free. Why does it follow then from $r^n=0$ that $r=0\pmod m$ ? (Wondering)

b) Suppose that $p^2\mid m$ for a prime $p$. Why do we take $=\frac{m}{p}$ ? (Wondering)
 
mathmari said:
Why do we have to show also that $a+b$ and $-a$ are nilpotent? (Wondering)
I got stuck right now...

Because ideals of a ring must *also* be additive subgroups...


I haven't really understood that... (Wondering)

If a (square) matrix $A$ over a field is invertible then $\det(A) \neq 0$. But if a matrix is nilpotent, then:

$A^n = 0 \implies \det(A^n) = 0 \implies (\det(A))^n = 0 \implies \det(A) = 0$.


a) Suppose that $m$ is square-free. Why does it follow then from $r^n=0$ that $r=0\pmod m$ ? (Wondering)

Factor $r$ into primes, say: $r = p_1^{k_1}\cdots p_t^{k_t}$.

What can you say if $r^n = p_1^{nk_1}\cdots p_t^{nk_t} = am$?

b) Suppose that $p^2\mid m$ for a prime $p$. Why do we take $=\frac{m}{p}$ ? (Wondering)

That's a good question-why would I say that?
 
Deveno said:
Your proof for 2 is missing a crucial ingredient: you have to show that if $a$ is nilpotent that $a+b$ is also nilpotent (its obvious that $-a$ is nilpotent, since if:

$a^n = 0$, then $(-a)^n = (-1)^na^n = (-1)^n0 = 0$).

The trick to this is to use the binomial theorem, which holds when $R$ is commutative.
Deveno said:
Because ideals of a ring must *also* be additive subgroups...

Ah ok...

Suppose that $a,b\in N(R)$. So, there are $x,y\in \mathbb{N}$ such that $a^x=b^y=0$.

Then for $n=x+y$ we have the following:
$$(a+b)^n=\sum_{k=0}^n\binom{n}{k}a^{n-k}b^k$$
If $k\geq x$ then $a^k=0$ and if $k<x$ then $n-k=x+y-k>x+y-x=y \Rightarrow n-k>y$ and so $b^{n-k}=0$.
Therefore, every term of $(a+b)^n$ is equal to $0$, right? (Wondering)

So, $a+b$ is nilpotent.
Deveno said:
If a (square) matrix $A$ over a field is invertible then $\det(A) \neq 0$. But if a matrix is nilpotent, then:

$A^n = 0 \implies \det(A^n) = 0 \implies (\det(A))^n = 0 \implies \det(A) = 0$.
Deveno said:
For a non-commutative example, look at $\text{Mat}_2(\Bbb F_2)$. This has but 16 elements, and you can straight-away eliminate the 6 invertible elements (why?). Show there exists two nilpotent matrices with a non-nilpotent sum, so they cannot form an ideal.
So, can we take for example the following two matrices? $$A=\begin{pmatrix}
0 & 1\\
0 & 0
\end{pmatrix} \ \ , \ \ \ \ \ B=\begin{pmatrix}
0 & 0\\
1 & 0
\end{pmatrix}$$

We have that $$A^2=\begin{pmatrix}
0 & 1\\
0 & 0
\end{pmatrix} \begin{pmatrix}
0 & 1\\
0 & 0
\end{pmatrix} =\begin{pmatrix}
0 & 0\\
0 & 0
\end{pmatrix}\ \ , \ \ \ \ \ B^2=\begin{pmatrix}
0 & 0\\
1 & 0
\end{pmatrix}\begin{pmatrix}
0 & 0\\
1 & 0
\end{pmatrix}=\begin{pmatrix}
0 & 0\\
0 & 0
\end{pmatrix}$$

The sum of these two matrices is the matrix $A+B=\begin{pmatrix}
0 & 1\\
1 & 0
\end{pmatrix}$. Then $(A+B)^2=\begin{pmatrix}
0 & 1\\
1 & 0
\end{pmatrix} \begin{pmatrix}
0 & 1\\
1 & 0
\end{pmatrix}=\begin{pmatrix}
1 & 0\\
0 & 1
\end{pmatrix}=I$ so $(A+B)^n=I^n=I, \forall n\in \mathbb{N}_{\geq 2}$, right? (Wondering)

Therefore, $A$ and $B$ are nilpotent but the matrix $A+B$ is not nilpotent.

Is this correct? (Wondering)
Deveno said:
Factor $r$ into primes, say: $r = p_1^{k_1}\cdots p_t^{k_t}$.

What can you say if $r^n = p_1^{nk_1}\cdots p_t^{nk_t} = am$?

In that case we have $r^n\equiv 0\pmod m$.
Deveno said:
b) If $p^2|m$ for a prime $p$, what can you say about $r = \dfrac{m}{p}$?

(Thinking)

Then we have that $m=rp$.

So, $rp=m\equiv 0\pmod m$.

Then $rp\in N(\mathbb{Z}_m)$, right? (Wondering)
 
Last edited by a moderator:
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top