Why can't a free electron absorb or emit photon?

  • Thread starter Thread starter Zeus2nd
  • Start date Start date
  • Tags Tags
    Electron Photon
Click For Summary
SUMMARY

A free electron cannot absorb or emit a photon due to the violation of conservation laws, specifically energy and momentum conservation. When analyzing the absorption of a photon, equations derived from special relativity demonstrate that the energy of the photon cannot equate to the energy of the electron, leading to the conclusion that such processes are forbidden. Similarly, the emission of a photon by a free electron is also prohibited, as it results in no net change in the electron's momentum, contradicting the conservation principles. This understanding is crucial for comprehending interactions in quantum electrodynamics.

PREREQUISITES
  • Understanding of special relativity principles
  • Familiarity with conservation of energy and momentum
  • Basic knowledge of quantum electrodynamics
  • Ability to interpret and manipulate equations involving 4-momentum
NEXT STEPS
  • Study the implications of conservation laws in quantum mechanics
  • Learn about the role of photons in electromagnetic interactions
  • Explore the concept of Free Electron Lasers (FELs) and their operational principles
  • Investigate the relationship between electrons and photons in different reference frames
USEFUL FOR

Physics students, researchers in quantum mechanics, and anyone interested in the fundamental interactions between electrons and photons will benefit from this discussion.

Zeus2nd
Messages
1
Reaction score
0

Homework Statement


In an article, I am informed that a free electron can neither absorb nor emit a photon. I just want to know why?! Please help me.

Homework Equations




The Attempt at a Solution


I've no idea at all. Photon is the medium boson carrying electromagnetic force, so the relationship between electron and photon is interesting. The above process is said to bef orbidden, and I think some conservation laws must be violated!
 
Physics news on Phys.org
look at the conduction electrons in a metal and how they interact with light.
 
Hello, Zeus! I'm so glad to come across your problem. Nice and attractive!
It is essential in special relativity that, a free electron can neither absorb nor emit photons. Hints are given in details below.

1. Absorbing of photon is forbidden.

If a free electron could absorb a photon, then, according to conservation of energy and momentum,
$$
\hbar \omega +mc^2 = \sqrt{p^2c^2 + m^2c^4} (Eq1)
$$
$$
\hbar k = p (Eq2)
$$
where $\omega$ and $k$ are the frequency and wavenumber of the photon, respectively, $m$ the electron's rest mass, $p$ the momentum of the electron after absorbing the photon. Eq2 leads to
$$
p^2=\hbar^2 k^2 = \hbar^2 \frac{\omega^2}{c^2} (Eq3)
$$
Insert Eq3 into Eq2, and square of the left side is
$$
(\hbar \omega +mc^2 )^2 =\hbar^2 \omega^2 + m^2c^4+2mc^2\hbar \omega
$$
when square of the right side is
$$
\hbar^2\omega^2+m^2c^4
$$
So, if Eq1 holds, $\hbar \omega=0$. There is no photon carrying vanishing energy. Hence, absorbing of a photon by a free electron is forbidden.


2. Emitting of a photon is Forbidden
Suppose the intial (before photon emitting) and final (after photon emitting) 4-momentum of the electron are separately $p_\mu$, $p'_\mu $:
$$
p_\mu=(0,0,0,imc), \qquad p'_\mu = \left[p, i\frac{mc}{\sqrt{1-\frac{v^2}{c^2}}} \right] (Eq4)
$$
According to conservation of energy and momentum:
$$
p_\mu=q_\mu+p'_\mu (Eq5)
(p_\mu - p'_\mu)^2 =q_\mu^2 (Eq6)
$$
where $q_\mu$ refers to the 4-momentum of the photon. From Eq5 and Eq6, we have
$$
(p_\mu - p'_\mu)^2 = p_\mu^2 -2p_\mu p'_\mu+p'_\mu^2
=-m^2c^2- 2p_\mu p'_\mu -\frac{mc^2}{1-\frac{v^2}{c^2}} (Eq7)
$$
Recall that
$$
p_\mu p'_\mu = -\frac{mc^2}{\sqrt{1-\frac{v^2}{c^2}}} (Eq8)
$$
Insert Eq8 into Eq7, we have
$$
p_\mu p'_\mu = -m^2 c^2 \left[ 1-\frac{1}{\sqrt{1-\frac{v^2}{c^2}}} \right] (Eq9)
$$
Yet $q_\mu^2=0$, so, $p_\mu=p'_\mu$, to ensure Eq5 and Eq6 hold. Thus the state of motion of the electron is not disturbed, with no momentum transported to the photon. Hence, emitting of a photon by the free electron is forbidden.
 
Zeus2nd said:

Homework Statement


In an article, I am informed that a free electron can neither absorb nor emit a photon. I just want to know why?! Please help me.

Homework Equations




The Attempt at a Solution


I've no idea at all. Photon is the medium boson carrying electromagnetic force, so the relationship between electron and photon is interesting. The above process is said to bef orbidden, and I think some conservation laws must be violated!

Sounds like the article is wrong. Or else they are placing constraints on the electrons that are not met in FELs...

http://en.wikipedia.org/wiki/Free_electron_laser

.
 
berkeman said:
Sounds like the article is wrong. Or else they are placing constraints on the electrons that are not met in FELs...

http://en.wikipedia.org/wiki/Free_electron_laser

The electrons in a Free-electron laser aren't actually free in the sense used for the question. They are tightly controlled by an oscillating magnetic field, so that they emit coherent radiation.

An electron can't absorb a photon all by itself, because you can't get conservation of energy and momentum with the electron alone.

Cheers -- sylas
 
I would like to draw your attention to https://www.physicsforums.com/showthread.php?t=308657 , on which another interesting problem on the relationship between photon and electron is discussed. This problem is ----why can an electron - positron pair not be created by a photon in free space(by sheelbe999 )? Here also, mathematical formulation are given in details as a hint.
 
Tian WJ said:
I would like to draw your attention to https://www.physicsforums.com/showthread.php?t=308657...

Oh, beautiful! George Jones [post=2167860]#7[/post] gives a very elegant solution, that works here also.

Imagine that a free electron absorbs a photon. Analyze this in the reference frame where the electron is at rest after the absorption. What is the energy of the absorbed photon in this frame?
 
it is true that a free electron can't emit or absorb a photon but it is misleading to think that a free electron is totally unaffected by the passage of a light wave. the electron will indeed oscillate but it will always emit exactly the amount of energy that it absorbs. the 'net' effect is that it is unaffected.

I think that the light might be scattered in the process. I'm not sure.
 

Similar threads

  • · Replies 23 ·
Replies
23
Views
5K
Replies
37
Views
6K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 19 ·
Replies
19
Views
2K
Replies
8
Views
2K
  • · Replies 9 ·
Replies
9
Views
6K
Replies
1
Views
4K