Why degrees are equal if polynomial are equal?

Click For Summary
If two polynomials f(x) and g(x) are equal, they must have the same degree, as their graphs would coincide only if their degrees match. The discussion explores the proof that if f(x) = g(x) for all x, then the difference f-g is the zero polynomial, which has infinitely many roots. This implies that f and g cannot differ in degree, as non-zero polynomials have only a finite number of roots. Additionally, the conversation touches on exceptions in finite fields, where polynomials can have the same graph but different degrees. Overall, the consensus is that equality of polynomials necessitates equality of their degrees.
Avichal
Messages
294
Reaction score
0
Two polynomial f(x) and g(x) are equal then their degrees are equal.
This is a very trivial statement and it shouldn't worry me much but it is.

I get an intuitive idea why they should be equal. Their graphs wouldn't coincide for unequal degrees.
But what if somehow the coefficients make f(x) = g(x) for all values of x?

Is there a more rigorous proof for this statement?
 
Mathematics news on Phys.org
? if f(x)=g(x) then of course they are of the same degree, the two functions are equal.
I'm not quite sure what you're asking, if two functions are the same then everything about them are equal.
 
First assume our field is infinite, like R or C. The difference between two polynomials is a polynomial, so f−g is a polynomial. Since f(x)=g(x) for all x, this means that f−g have infinitely many zeros, whence f−g=0.

Now, for Z/pZ , p prime, we have x^p−a=x−a, since x^p=x
 
HomogenousCow said:
? if f(x)=g(x) then of course they are of the same degree, the two functions are equal.
I'm not quite sure what you're asking, if two functions are the same then everything about them are equal.
Yes, I know its obvious. But I was looking for a proof.
rattanjot14 said:
First assume our field is infinite, like R or C. The difference between two polynomials is a polynomial, so f−g is a polynomial. Since f(x)=g(x) for all x, this means that f−g have infinitely many zeros, whence f−g=0.

Now, for Z/pZ , p prime, we have x^p−a=x−a, since x^p=x
Thanks for the proof.
By your last line are you suggesting that this isn't always the case.
 
Avichal said:
Yes, I know its obvious. But I was looking for a proof.

Thanks for the proof.
By your last line are you suggesting that this isn't always the case.

If you are using the two-element field (i.e. GF[2]) then the polynomial function f(x) = x3 + 1 and the polynomial function g(x) = x + 1 both have the same graph:

0: 1
1: 0

As formal polynomials they have different degrees. But as polynomial functions they have the same graph.
 
Last edited:
Assuming fields of characteristic zero , re the cases brought up above by jbriggs and rattan, maybe you can use the Fundamental Theorem of Algebra (considering complex roots ), to argue that both must have the same roots and therefore the samenumber of roots.

Otherwise,how about this: if f=g, then f-g =0 is the zero polynomial ( not just the number zero). But every
non-zero polynomial has only finitely-many roots, while the zero polynomial (over char. zero ) does not. Then
f-g must be the 0 polynomial:

0*x^n +0*x^{n-1)+...+0*x+0.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 24 ·
Replies
24
Views
866
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
7K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 18 ·
Replies
18
Views
4K