Why didn't radioactive decay probabilities cause the same uproar as QM

Click For Summary
SUMMARY

This discussion explores the relationship between radioactive decay and quantum mechanics (QM), emphasizing the probabilistic nature of both phenomena. Participants highlight that while deterministic equations exist for radioactive decay, the actual decay of individual atoms is inherently random, governed by probability distributions. The conversation also touches on the historical context of scientific understanding, noting that the necessity of an observer in QM was not recognized until the development of quantum formalism around 1926. Key references include Dirac's and Bell's discussions on the measurement problem in QM.

PREREQUISITES
  • Understanding of quantum mechanics principles and terminology
  • Familiarity with radioactive decay and its mathematical modeling
  • Knowledge of probability distributions and their applications in physics
  • Awareness of historical developments in physics, particularly around the early 20th century
NEXT STEPS
  • Research the measurement problem in quantum mechanics, focusing on interpretations by Dirac and Bell
  • Study the mathematical modeling of radioactive decay, including differential equations
  • Explore the implications of probability distributions in quantum mechanics and radioactive decay
  • Investigate the historical evolution of scientific thought regarding determinism and randomness in physics
USEFUL FOR

Physicists, students of quantum mechanics, historians of science, and anyone interested in the philosophical implications of determinism and probability in modern physics.

  • #31
Could one attribute a single radioactive decay to complex external conditions such as climate, similar to how genetic mutation occurs? Or is there no theory behind it at all?
 
Physics news on Phys.org
  • #32
.
vanhees71 said:
I'd say, there's no difference between the observed randomness of quantum phenomena in general and radioactive decay probabilities.

One difference is that QM is deterministic when you're not measuring.
 
  • #33
Lord Jestocost said:
My formulation is based on the following sentence in Sir Arthur Stanley Eddington’s book „THE NATURE OF THE PHYSICAL WORLD“ (which I highly recommend): „This follows at once if our fundamental contention is admitted that the introduction of randomness is the only thing which cannot be undone.

So he views randomness as noise. I don't see how deterministic systems could be undone either, however.
 
  • #34
BruteForce1 said:
Explain

It means: You cannot trace back along a causal chain in space and time why a true random individual event has occurred at a certain space-time coordination.
 
  • #35
My definition of randomness is: a causal process that cannot be attributed to any external or internal antecedent factor. In other words a causeless causal process.

I don't know if radioactive decay and QM really fits that.
 
  • Skeptical
Likes   Reactions: weirdoguy
  • #36
Lord Jestocost said:
It means: You cannot trace back along a causal chain in space and time why a true random individual event has occurred at a certain space-time coordination.

And that's not really true for RD or QM. Not being able to account for is why it happens at a particular point in time is different from why it happens at all.
 
  • Skeptical
Likes   Reactions: weirdoguy
  • #37
Nugatory said:
- the probability of it decaying at any given moment is the same for all moments.

That's a pattern. If something always has a 50% probability of failure, then that is a pattern.
 
  • Skeptical
Likes   Reactions: weirdoguy
  • #38
A random physical process to me is: the absence of everything followed by a quantum fluctuation state, with all the parameters involved in generating a universe, followed by a generated universe.

The first chain is completely unaccounted for.
 
  • Skeptical
Likes   Reactions: weirdoguy
  • #39
An ever existing quantum fluctuation state generating universes in the same fashion as radioactive nucleis decaying is not random to me, however. We have a source at least.

The devil is in the details.
 
  • Skeptical
Likes   Reactions: weirdoguy
  • #40
BruteForce1 said:
An ever existing quantum fluctuation state generating universes in the same fashion as radioactive nucleis decaying is not random to me, however. We have a source at least.

The devil is in the details.
Either I'm not seeing some posts or you're debating with yourself here.
 
  • Like
Likes   Reactions: weirdoguy
  • #41
PeroK said:
Either I'm not seeing some posts or you're debating with yourself here.

I'm fleshing out my line of thinking out. If we have a source, how can it be random? It is a perfect of example of devil in the details.

I also gave an example of what would be a sourceless phenomenon.
 
  • #42
Lord Jestocost said:
It means: You cannot trace back along a causal chain in space and time why a true random individual event has occurred at a certain space-time coordination.
This is the case for radioactive decay. At least today there's no known way to know, when a nucleus precisely decays or why a nucleus has decayed at precisely that point in time at this place. It just happens randomly. All we have is a very precise theory predicting the probability for its decay, the Standard Model.
 
  • #43
vanhees71 said:
This is the case for radioactive decay. At least today there's no known way to know, when a nucleus precisely decays or why a nucleus has decayed at precisely that point in time at this place. It just happens randomly. All we have is a very precise theory predicting the probability for its decay, the Standard Model.

You know it has something to do with the radioactive nucleus, though. It is the most reasonable inference. If your technology breaks down but you can't trace to why it broke down, and why at that point, that doesn't mean it was a random event. Or do you think it was?
 
  • #44
Of course, there's no reasonable doubt that the radioactive decay is the decay of a radioactive nucleus. If I have some Radium nucleus, I know it will at some time randomly emit an ##\alpha## particle (He nucleus) with a half-life of about 1600 years. I.e., investigating a large number of Ra nuclei after 1600 years I have about only half of them left. When a specific Ra nucleus decays, we cannot predict.
 
  • #45
vanhees71 said:
Of course, there's no reasonable doubt that the radioactive decay is the decay of a radioactive nucleus. If I have some Radium nucleus, I know it will at some time randomly emit an ##\alpha## particle (He nucleus) with a half-life of about 1600 years. I.e., investigating a large number of Ra nuclei after 1600 years I have about only half of them left. When a specific Ra nucleus decays, we cannot predict.

And external factors like climate have no bearing on it? I'm trying to think of it like fail rates in technology. We know why some batteries fail earlier than others (storage, heating, etc).

same with genetic mutation.
 
  • #46
Have I understood the mathematical principle correctly here...If you have a lot of radioactive nucleus and you know anyone of them can go off at anytime, probability of a decay is higher since you have more of them?

One of them will go off T-2, another T-10, another T-30, etc and the more you have, the more T-decays scenarios you have made possible?There is nothing more to it than this, right?
 
  • #47
vanhees71 said:
Of course, there's no reasonable doubt that the radioactive decay is the decay of a radioactive nucleus. If I have some Radium nucleus, I know it will at some time randomly emit an ##\alpha## particle (He nucleus) with a half-life of about 1600 years. I.e., investigating a large number of Ra nuclei after 1600 years I have about only half of them left. When a specific Ra nucleus decays, we cannot predict.
Were there experiments that repeatedly prepared single radioactive atoms and waited until they decayed?
 
  • #48
BruteForce1 said:
And external factors like climate have no bearing on it? I'm trying to think of it like fail rates in technology. We know why some batteries fail earlier than others (storage, heating, etc).

same with genetic mutation.
It's very difficult to affect nuclear properties like decay rates due to the typical energy scales involved (MeV rather than eV in atomic physics). The only exception are cases like bound ##\beta## decays, where it can make a huge difference whether you look at the atom or the completely ionized bare nucleus, where due to the Pauli effect the ##\beta## decay is pretty well blocked, and the half-life between the atom and the bare nucleus differs by several orders of magnitude:

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.77.5190
 
  • Informative
  • Like
Likes   Reactions: DarMM, weirdoguy and A. Neumaier
  • #49
A. Neumaier said:
Were there experiments that repeatedly prepared single radioactive atoms and waited until they decayed?
I'd consider the investigations in storage rings as examples for this. This is a pretty interesting field, also for precision measurements. One fascinating example is the GSI storage-ring result on Rhenium bound ##\beta## decay quoted above. Then there was also a high-precision test for time dilation of the life-time of moving unstable nuclei (at moderate speeds of about ##\beta=1/3##), of course confirming the Lorentz ##\gamma## factor result of Special Relativity.
 
  • Like
Likes   Reactions: mfb
  • #50
vanhees71 said:
I'd consider the investigations in storage rings as examples for this. This is a pretty interesting field, also for precision measurements. One fascinating example is the GSI storage-ring result on Rhenium bound ##\beta## decay quoted above.
In these experiments a large number of radioactive atoms are prepared simultaneously and only the number of decay product atoms counted; one does not know which atom decayed when. Thus this is not what I meant.

My question was whether a single radioactive atom prepared on a surface or an ion trap can be observed to decay.
 
  • #51
This thread has run its course. Time to close.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 35 ·
2
Replies
35
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 21 ·
Replies
21
Views
4K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 15 ·
Replies
15
Views
4K
  • · Replies 36 ·
2
Replies
36
Views
7K
  • · Replies 25 ·
Replies
25
Views
13K
  • · Replies 10 ·
Replies
10
Views
7K
Replies
14
Views
10K