MHB Why Do All Factors of a Number Arise from Combinations of Its Prime Factors?

jman115
Messages
2
Reaction score
0
When I teach GCF to students, I show them how to find via the prime factorization and explain to them how the PF can get you all the factors of a number by multiplying different combinations of the Prime Factors and then proceed to explain why they are supposed to multiply the common Prime factors for the gcf.
My question is, why does multiplying different combinations of the prime factors get you ALL of the number's factors?
 
Mathematics news on Phys.org
jman115 said:
When I teach GCF to students, I show them how to find via the prime factorization and explain to them how the PF can get you all the factors of a number by multiplying different combinations of the Prime Factors and then proceed to explain why they are supposed to multiply the common Prime factors for the gcf.
My question is, why does multiplying different combinations of the prime factors get you ALL of the number's factors?

Hi jman115,

I know you know this already, but every composite number can be factored into the products of only prime numbers. Any combination of products with these prime factors will yield a composite factor of the original number.

Don't know if that's answers your question. Hope so.
 
"Any combination of products with these prime factors will yield a composite factor of the original number." I stated this fact in my opening thread.

I am asking why this works. When you multiply all combinations of the prime factors you get all the composite factors of that number. I want to know why this works.
 
This is a nice visual demonstration from Wikipedia of the prime factorization process. Any composite factor of the original number will be broken down into its own product prime factors, which are part of the original number's prime factor list.

View attachment 31

Take a number like 64. This could be broken down into 32*2 or 16*4, then repeated until you have only the prime factors. No matter which way you break down a number into composite factors then into prime factors, the end result will be the same list of prime factors. Because the list of prime factors is the same no matter which composite factors you start with, some combination of prime factors multiplied together will also produce any given composite factor.
 

Attachments

  • PrimeDecompositionExample.png
    PrimeDecompositionExample.png
    2.1 KB · Views: 94
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
23
Views
3K
Replies
16
Views
3K
Replies
3
Views
4K
Replies
4
Views
2K
Replies
2
Views
2K
Replies
2
Views
13K
Replies
1
Views
2K
Back
Top