MHB Why Do All Factors of a Number Arise from Combinations of Its Prime Factors?

AI Thread Summary
Every composite number can be expressed as a product of its prime factors, and all factors of a number arise from combinations of these primes. When different combinations of prime factors are multiplied, they yield all possible composite factors of the original number. This is because any composite factor can be broken down into its prime factors, which are part of the original number's prime factorization. For example, the number 64 can be decomposed into various combinations, but the prime factors remain consistent. Thus, multiplying combinations of prime factors will always produce every composite factor of the number.
jman115
Messages
2
Reaction score
0
When I teach GCF to students, I show them how to find via the prime factorization and explain to them how the PF can get you all the factors of a number by multiplying different combinations of the Prime Factors and then proceed to explain why they are supposed to multiply the common Prime factors for the gcf.
My question is, why does multiplying different combinations of the prime factors get you ALL of the number's factors?
 
Mathematics news on Phys.org
jman115 said:
When I teach GCF to students, I show them how to find via the prime factorization and explain to them how the PF can get you all the factors of a number by multiplying different combinations of the Prime Factors and then proceed to explain why they are supposed to multiply the common Prime factors for the gcf.
My question is, why does multiplying different combinations of the prime factors get you ALL of the number's factors?

Hi jman115,

I know you know this already, but every composite number can be factored into the products of only prime numbers. Any combination of products with these prime factors will yield a composite factor of the original number.

Don't know if that's answers your question. Hope so.
 
"Any combination of products with these prime factors will yield a composite factor of the original number." I stated this fact in my opening thread.

I am asking why this works. When you multiply all combinations of the prime factors you get all the composite factors of that number. I want to know why this works.
 
This is a nice visual demonstration from Wikipedia of the prime factorization process. Any composite factor of the original number will be broken down into its own product prime factors, which are part of the original number's prime factor list.

View attachment 31

Take a number like 64. This could be broken down into 32*2 or 16*4, then repeated until you have only the prime factors. No matter which way you break down a number into composite factors then into prime factors, the end result will be the same list of prime factors. Because the list of prime factors is the same no matter which composite factors you start with, some combination of prime factors multiplied together will also produce any given composite factor.
 

Attachments

  • PrimeDecompositionExample.png
    PrimeDecompositionExample.png
    2.1 KB · Views: 96
Last edited:
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
23
Views
3K
Replies
16
Views
3K
Replies
3
Views
4K
Replies
4
Views
2K
Replies
2
Views
2K
Replies
2
Views
13K
Replies
1
Views
2K
Back
Top