MHB Why Do Solutions to This ODE Differ?

  • Thread starter Thread starter Chipset3600
  • Start date Start date
  • Tags Tags
    Ode
Click For Summary
The discussion revolves around solving the ordinary differential equation \( y \sin(x) = y \ln(y) \). The original poster attempts to derive a solution but finds discrepancies with the book's answer, specifically arriving at a particular solution \( y = 1 \). Various substitution methods are proposed, including transforming the equation into integrals involving \( \ln(y) \) and trigonometric functions. The conversation highlights the complexity of the integral solutions and the importance of careful substitution to avoid errors. Ultimately, the poster's solution diverges from the expected result, prompting further exploration of the problem's nuances.
Chipset3600
Messages
79
Reaction score
0
$$\[y'sin(x)= yln(y)\]

$$
Hi, I am trying to solve this one but i can't find the same result of the book:
Here is my solution:

 
Physics news on Phys.org
\displaystyle \begin{align*} \frac{dy}{dx}\sin{(x)} &= y\ln{(y)} \\ \frac{1}{y\ln{(y)}}\,\frac{dy}{dx} &= \frac{1}{\sin{(x)}} \\ \frac{1}{\ln{(y)}}\,\frac{1}{y}\,\frac{dy}{dx} &= \frac{\sin{(x)}}{\sin^2{(x)}} \\ \frac{1}{\ln{(y)}}\,\frac{1}{y}\,\frac{dy}{dx} &= \frac{\sin{(x)}}{1 - \cos^2{(x)}} \\ \int{\frac{1}{\ln{(y)}}\,\frac{1}{y}\,\frac{dy}{dx}\,dx} &= \int{\frac{\sin{(x)}}{1 - \cos^2{(x)}}\,dx} \\ \int{ \frac{1}{\ln{(y)}}\,\frac{1}{y}\,dy} &= -\int{ \frac{-\sin{(x)}}{1 - \cos^2{(x)}}\,dx} \end{align*}

Now make the substitutions \displaystyle \begin{align*} u = \ln{(y)} \implies du = \frac{1}{y}\,dy \end{align*} and \displaystyle \begin{align*} v = \cos{(x)} \implies dv = -\sin{(x)}\,dx \end{align*} and the DE becomes

\displaystyle \begin{align*} \int{\frac{1}{u}\,du} &= -\int{ \frac{1}{1 - v^2}\,dv} \end{align*}

This should now be easy to solve. The RHS requires partial fractions.
 
Prove It said:
\displaystyle \begin{align*} \frac{dy}{dx}\sin{(x)} &= y\ln{(y)} \\ \frac{1}{y\ln{(y)}}\,\frac{dy}{dx} &= \frac{1}{\sin{(x)}} \\ \frac{1}{\ln{(y)}}\,\frac{1}{y}\,\frac{dy}{dx} &= \frac{\sin{(x)}}{\sin^2{(x)}} \\ \frac{1}{\ln{(y)}}\,\frac{1}{y}\,\frac{dy}{dx} &= \frac{\sin{(x)}}{1 - \cos^2{(x)}} \\ \int{\frac{1}{\ln{(y)}}\,\frac{1}{y}\,\frac{dy}{dx}\,dx} &= \int{\frac{\sin{(x)}}{1 - \cos^2{(x)}}\,dx} \\ \int{ \frac{1}{\ln{(y)}}\,\frac{1}{y}\,dy} &= -\int{ \frac{-\sin{(x)}}{1 - \cos^2{(x)}}\,dx} \end{align*}

Now make the substitutions \displaystyle \begin{align*} u = \ln{(y)} \implies du = \frac{1}{y}\,dy \end{align*} and \displaystyle \begin{align*} v = \cos{(x)} \implies dv = -\sin{(x)}\,dx \end{align*} and the DE becomes

\displaystyle \begin{align*} \int{\frac{1}{u}\,du} &= -\int{ \frac{1}{1 - v^2}\,dv} \end{align*}

This should now be easy to solve. The RHS requires partial fractions.

Alternatively, you could have that

$$\begin{aligned} \frac{1}{y\ln y}\frac{dy}{dx} &= \csc x\\ \frac{1}{y\ln y}\frac{dy}{dx} &= \csc x \cdot \frac{\csc x + \cot x}{\csc x+\cot x}\\ \frac{1}{y\ln y}\frac{dy}{dx} &= \frac{\csc^2x + \csc x\cot x}{\csc x + \cot x}\\ \int\frac{1}{y\ln y}\,dy &= -\int\frac{-\csc^2x-\csc x\cot x}{\csc x+\cot x}\,dx\end{aligned}$$

Making the substitutions $u=\ln y\implies \,du=\frac{1}{y}\,dy$ and $v=\csc x+\cot x \implies \,dv = -\csc^2x-\csc x\cot x\,dx$ transforms the problem into
$$\int\frac{1}{u}\,du = -\int\frac{1}{v}\,dv$$
which is an easy problem to solve from here. The reason why I also present it this way is because the OP seems to be relying on the fact that $\displaystyle\int \csc x \,dx = -\ln|\csc x + \cot x| + C$ in the solution attempt seen in their original post.
 
Actually the problem isn't solve the integral, as you can see in my link "
" with my solution i found a particular solution that isn't the same of book: "y = 1".
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
28
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 24 ·
Replies
24
Views
4K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
3
Views
2K