Why do things fall into a black hole?

  • Context: Undergrad 
  • Thread starter Thread starter Singlau
  • Start date Start date
  • Tags Tags
    Black hole Fall Hole
Click For Summary
SUMMARY

The discussion centers on the dynamics of objects near black holes, specifically addressing why objects do not simply orbit black holes like planets do around stars. It establishes that without initial angular momentum, an object falling radially into a black hole, such as a Schwarzschild black hole, will not achieve a stable orbit and will instead fall directly into it. The conversation includes detailed mathematical formulations, including the geodesic equations and the metric tensor for a Schwarzschild black hole, emphasizing the role of angular momentum and gravitational effects in determining an object's trajectory.

PREREQUISITES
  • Understanding of general relativity and its principles
  • Familiarity with Schwarzschild black holes and their properties
  • Knowledge of geodesic equations and metric tensors
  • Basic grasp of angular momentum in gravitational fields
NEXT STEPS
  • Study the Schwarzschild metric and its implications in general relativity
  • Explore the concept of geodesics in curved spacetime
  • Investigate the effects of angular momentum on orbits around black holes
  • Learn about rotating black holes and their differences from non-rotating ones
USEFUL FOR

Astronomers, physicists, and students of general relativity who are interested in the behavior of objects in strong gravitational fields, particularly those studying black hole dynamics and orbital mechanics.

Singlau
Messages
11
Reaction score
1
Earth will not fall into sun because it has inertia, keeping it in orbit. Even if it suddenly loses some inertia, it falls to a lower orbit and won't fall into the sun, as its inertia increase again due to conservation of angular momentum. So, if a thing fall near a black hole, shouldn't it make an orbit, orbiting so fast to reach equilibrium, instead of being eaten by the massive black hole? Or does it have relation with the density of the hole?
 
Astronomy news on Phys.org
Just using the word "inertia" may be misleading. The point is that whether in classical mechanics or in general relativity, and whether for a black hole(a non-rotating black hole!) or a regular star or planet, if the particle has no initial angular momentum, i.e. if its falling radially, it won't have a stable orbit around the source and will fall right into it.
But even in general relativity and even for a black hole, if the particle has a non-zero initial angular momentum or if the black hole is rotating, the particle may orbit around the black hole and its orbit may or may not be stable.
 
Let's take a Schwarzschild black hole as an example.

For a Schwarzschild black hole, we have $${\rm d}s^2=-\left(1-\frac{2GM}{r}\right){\rm d}t^2+\left(1-\frac{2GM}{r}\right)^{-1}{\rm d}r^2+r^2{\rm d}\theta^2+r^2{\rm sin}^2\theta{\rm d}\varphi^2$$So the metric tensor ##g_{\mu\nu}## has only diagonal element: $$g_{00}=-\left(1-\frac{2GM}{r}\right),\;g_{11}=\left(1-\frac{2GM}{r}\right)^{-1},\;g_{22}=r^2,\;g_{33}=r^2{\rm sin}^2\theta$$Therefore, we could calculate the connection ##\Gamma^{\mu}_{\nu\lambda}##: $$\Gamma^{0}_{01}=\Gamma^{0}_{10}=\frac{GM}{r\left(r-2GM\right)}$$ $$\Gamma^{1}_{00}=\frac{GM}{r^3}\left(r-2GM\right),\;\Gamma^{1}_{11}=-\frac{GM}{r\left(r-2GM\right)}$$ $$\Gamma^{1}_{22}=-\left(r-2GM\right),\;\Gamma^{1}_{33}=-\left(r-2GM\right){\rm sin}^2\theta$$ $$\Gamma^{2}_{21}=\Gamma^{2}_{12}=\Gamma^{3}_{31}=\Gamma^{3}_{13}=\frac{1}{r}$$ $$\Gamma^{2}_{33}=-{\rm sin}\theta{\rm cos}\theta,\;\Gamma^{3}_{23}=\Gamma^{3}_{32}={\rm cot}\theta$$
Consider the geodesics equation $$\frac{{\rm d}^2x^{\mu}}{{\rm d}p^2}+\Gamma^{\mu}_{\nu\lambda}\frac{{\rm d}x^{\nu}}{{\rm d}p}\frac{{\rm d}x^{\lambda}}{{\rm d}p}=0$$where ##p## is an affine parameter (##p=\tau## if the particle has mass ##m##, where ##\tau## is proper time), we can conclude that$$\frac{{\rm d}^2t}{{\rm d}p^2}+\frac{2GM}{r\left(r-2GM\right)}\frac{{\rm d}r}{{\rm d}p}\frac{{\rm d}t}{{\rm d}p}=0$$ $$\frac{{\rm d}^2r}{{\rm d}p^2}+\frac{GM}{r^3}\left(r-2GM\right)\left(\frac{{\rm d}t}{{\rm d}p}\right)^2-\frac{GM}{r\left(r-2GM\right)}\left(\frac{{\rm d}r}{{\rm d}p}\right)^2-\left(r-2GM\right)\left[\left(\frac{{\rm d}\theta}{{\rm d}p}\right)^2+{\rm sin}^2\theta\left(\frac{{\rm d}\varphi}{{\rm d}p}\right)^2\right]=0$$ $$\frac{{\rm d}^2\theta}{{\rm d}p^2}+\frac{2}{r}\frac{{\rm d}r}{{\rm d}p}\frac{{\rm d}\theta}{{\rm d}p}-{\rm sin}\theta{\rm cos}\theta\left(\frac{{\rm d}\varphi}{{\rm d}p}\right)^2=0$$ $$\frac{{\rm d}^2\varphi}{{\rm d}p^2}+\frac{2}{r}\frac{{\rm d}r}{{\rm d}p}\frac{{\rm d}\varphi}{{\rm d}p}+2{\rm cot}\theta\frac{{\rm d}\theta}{{\rm d}p}\frac{{\rm d}\varphi}{{\rm d}p}=0$$
Since the gravitational field is isotropic, we can define the plane constructed by the particle's position vector ##\vec{r}## and momentum vector ##\vec{p}## when ##t=0## as the equatorial plane, which means that ##\theta=\pi/2,\;\dot{\theta}=0##, and thus we know (from the third geodesics equation) that ##\ddot{\theta}=0##.

Due to the property of Killing vector field, we can get two conserved quantities: ##E\equiv \left(1-2GM/r\right){\rm d}t/{\rm d}p={\rm constant}## and ##L\equiv r^2{\rm sin}^2\theta{\rm d}\varphi/{\rm d}p=r^2{\rm d}\varphi/{\rm d}p={\rm constant}##

Besides, we know that ##-g_{\mu\nu}u^{\mu}u^{\nu}=\epsilon##. For photons we have ##\epsilon=0##, and for particles with mass ##m##, ##\epsilon=1##. Therefore, we can conclude that $$-\left(1-\frac{2GM}{r}\right)\left(\frac{{\rm d}t}{{\rm d}p}\right)^2+\left(1-\frac{2GM}{r}\right)^{-1}\left(\frac{{\rm d}r}{{\rm d}p}\right)^2+r^2\left(\frac{{\rm d}\varphi}{{\rm d}p}\right)^2=-\epsilon$$replace ##\left(1-2GM/r\right){\rm d}t/{\rm d}p## with ##E## and ##r^2{\rm d}\varphi/{\rm d}p## with ##L##, we know that $$-E^2+\left(\frac{{\rm d}r}{{\rm d}p}\right)^2+\left(1-\frac{2GM}{r}\right)\left(\frac{L^2}{r^2}+\epsilon\right)=0$$ which means $$\frac{1}{2}\left(\frac{{\rm d}r}{{\rm d}p}\right)^2+V\left(r\right)=\frac{1}{2}E^2$$where ##V\left(r\right)=\epsilon/2-GM\epsilon/r+L^2/\left(2r^2\right)-GML^2/r^3##

In conclusion, we have the equations of motion as follow $$\theta=\frac{\pi}{2}\\\left(1-\frac{2GM}{r}\right)\frac{{\rm d}t}{{\rm d}p}=E\\r^2\frac{{\rm d}\varphi}{{\rm d}p}=L\\\frac{1}{2}\left(\frac{{\rm d}r}{{\rm d}p}\right)^2+V\left(r\right)=\frac{1}{2}E^2$$
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 17 ·
Replies
17
Views
5K
  • · Replies 3 ·
Replies
3
Views
8K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K