Why do things fall into a black hole?

Click For Summary
Objects falling into a black hole do not necessarily orbit it unless they possess initial angular momentum; without this, they will fall directly into the black hole. The discussion highlights that even in general relativity, a particle's trajectory is influenced by its angular momentum and the nature of the black hole, such as whether it is rotating. For a Schwarzschild black hole, the equations governing motion reveal that particles can have stable or unstable orbits depending on their initial conditions. The gravitational field's isotropy allows for the definition of conserved quantities, which are crucial for understanding the dynamics near a black hole. Ultimately, the interplay between inertia, angular momentum, and gravitational effects determines whether an object will orbit or be consumed by a black hole.
Singlau
Messages
11
Reaction score
1
Earth will not fall into sun because it has inertia, keeping it in orbit. Even if it suddenly loses some inertia, it falls to a lower orbit and won't fall into the sun, as its inertia increase again due to conservation of angular momentum. So, if a thing fall near a black hole, shouldn't it make an orbit, orbiting so fast to reach equilibrium, instead of being eaten by the massive black hole? Or does it have relation with the density of the hole?
 
Astronomy news on Phys.org
Just using the word "inertia" may be misleading. The point is that whether in classical mechanics or in general relativity, and whether for a black hole(a non-rotating black hole!) or a regular star or planet, if the particle has no initial angular momentum, i.e. if its falling radially, it won't have a stable orbit around the source and will fall right into it.
But even in general relativity and even for a black hole, if the particle has a non-zero initial angular momentum or if the black hole is rotating, the particle may orbit around the black hole and its orbit may or may not be stable.
 
Let's take a Schwarzschild black hole as an example.

For a Schwarzschild black hole, we have $${\rm d}s^2=-\left(1-\frac{2GM}{r}\right){\rm d}t^2+\left(1-\frac{2GM}{r}\right)^{-1}{\rm d}r^2+r^2{\rm d}\theta^2+r^2{\rm sin}^2\theta{\rm d}\varphi^2$$So the metric tensor ##g_{\mu\nu}## has only diagonal element: $$g_{00}=-\left(1-\frac{2GM}{r}\right),\;g_{11}=\left(1-\frac{2GM}{r}\right)^{-1},\;g_{22}=r^2,\;g_{33}=r^2{\rm sin}^2\theta$$Therefore, we could calculate the connection ##\Gamma^{\mu}_{\nu\lambda}##: $$\Gamma^{0}_{01}=\Gamma^{0}_{10}=\frac{GM}{r\left(r-2GM\right)}$$ $$\Gamma^{1}_{00}=\frac{GM}{r^3}\left(r-2GM\right),\;\Gamma^{1}_{11}=-\frac{GM}{r\left(r-2GM\right)}$$ $$\Gamma^{1}_{22}=-\left(r-2GM\right),\;\Gamma^{1}_{33}=-\left(r-2GM\right){\rm sin}^2\theta$$ $$\Gamma^{2}_{21}=\Gamma^{2}_{12}=\Gamma^{3}_{31}=\Gamma^{3}_{13}=\frac{1}{r}$$ $$\Gamma^{2}_{33}=-{\rm sin}\theta{\rm cos}\theta,\;\Gamma^{3}_{23}=\Gamma^{3}_{32}={\rm cot}\theta$$
Consider the geodesics equation $$\frac{{\rm d}^2x^{\mu}}{{\rm d}p^2}+\Gamma^{\mu}_{\nu\lambda}\frac{{\rm d}x^{\nu}}{{\rm d}p}\frac{{\rm d}x^{\lambda}}{{\rm d}p}=0$$where ##p## is an affine parameter (##p=\tau## if the particle has mass ##m##, where ##\tau## is proper time), we can conclude that$$\frac{{\rm d}^2t}{{\rm d}p^2}+\frac{2GM}{r\left(r-2GM\right)}\frac{{\rm d}r}{{\rm d}p}\frac{{\rm d}t}{{\rm d}p}=0$$ $$\frac{{\rm d}^2r}{{\rm d}p^2}+\frac{GM}{r^3}\left(r-2GM\right)\left(\frac{{\rm d}t}{{\rm d}p}\right)^2-\frac{GM}{r\left(r-2GM\right)}\left(\frac{{\rm d}r}{{\rm d}p}\right)^2-\left(r-2GM\right)\left[\left(\frac{{\rm d}\theta}{{\rm d}p}\right)^2+{\rm sin}^2\theta\left(\frac{{\rm d}\varphi}{{\rm d}p}\right)^2\right]=0$$ $$\frac{{\rm d}^2\theta}{{\rm d}p^2}+\frac{2}{r}\frac{{\rm d}r}{{\rm d}p}\frac{{\rm d}\theta}{{\rm d}p}-{\rm sin}\theta{\rm cos}\theta\left(\frac{{\rm d}\varphi}{{\rm d}p}\right)^2=0$$ $$\frac{{\rm d}^2\varphi}{{\rm d}p^2}+\frac{2}{r}\frac{{\rm d}r}{{\rm d}p}\frac{{\rm d}\varphi}{{\rm d}p}+2{\rm cot}\theta\frac{{\rm d}\theta}{{\rm d}p}\frac{{\rm d}\varphi}{{\rm d}p}=0$$
Since the gravitational field is isotropic, we can define the plane constructed by the particle's position vector ##\vec{r}## and momentum vector ##\vec{p}## when ##t=0## as the equatorial plane, which means that ##\theta=\pi/2,\;\dot{\theta}=0##, and thus we know (from the third geodesics equation) that ##\ddot{\theta}=0##.

Due to the property of Killing vector field, we can get two conserved quantities: ##E\equiv \left(1-2GM/r\right){\rm d}t/{\rm d}p={\rm constant}## and ##L\equiv r^2{\rm sin}^2\theta{\rm d}\varphi/{\rm d}p=r^2{\rm d}\varphi/{\rm d}p={\rm constant}##

Besides, we know that ##-g_{\mu\nu}u^{\mu}u^{\nu}=\epsilon##. For photons we have ##\epsilon=0##, and for particles with mass ##m##, ##\epsilon=1##. Therefore, we can conclude that $$-\left(1-\frac{2GM}{r}\right)\left(\frac{{\rm d}t}{{\rm d}p}\right)^2+\left(1-\frac{2GM}{r}\right)^{-1}\left(\frac{{\rm d}r}{{\rm d}p}\right)^2+r^2\left(\frac{{\rm d}\varphi}{{\rm d}p}\right)^2=-\epsilon$$replace ##\left(1-2GM/r\right){\rm d}t/{\rm d}p## with ##E## and ##r^2{\rm d}\varphi/{\rm d}p## with ##L##, we know that $$-E^2+\left(\frac{{\rm d}r}{{\rm d}p}\right)^2+\left(1-\frac{2GM}{r}\right)\left(\frac{L^2}{r^2}+\epsilon\right)=0$$ which means $$\frac{1}{2}\left(\frac{{\rm d}r}{{\rm d}p}\right)^2+V\left(r\right)=\frac{1}{2}E^2$$where ##V\left(r\right)=\epsilon/2-GM\epsilon/r+L^2/\left(2r^2\right)-GML^2/r^3##

In conclusion, we have the equations of motion as follow $$\theta=\frac{\pi}{2}\\\left(1-\frac{2GM}{r}\right)\frac{{\rm d}t}{{\rm d}p}=E\\r^2\frac{{\rm d}\varphi}{{\rm d}p}=L\\\frac{1}{2}\left(\frac{{\rm d}r}{{\rm d}p}\right)^2+V\left(r\right)=\frac{1}{2}E^2$$
 
Hi, I saw someone with an avatar on a different forum that turns out to be the sombrero galaxy. AI says, too distant to know much about, aside from billions of starts, potentially tons of planets, and a supermassive black hole in the center. I find that setup fascinating, despite knowing close to nothing about the universe. So I ask: could anyone point me in the direction of, or provide information about this galaxy? I do not trust AI beyond general information, and I like to go pretty...

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 17 ·
Replies
17
Views
5K
  • · Replies 3 ·
Replies
3
Views
8K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 51 ·
2
Replies
51
Views
4K