Why does a free particle in an infinite well have uncertainty bigger than h/2 ?

AI Thread Summary
A free particle in an infinite well exhibits uncertainty greater than h/2 due to its wave function characteristics. The discussion revolves around identifying the wave function that achieves the minimum uncertainty, with a suggestion that a normal (Gaussian) curve might be the answer. The ground state of the harmonic oscillator is proposed as a potential solution, characterized by a specific Gaussian wave function. Clarification is provided that this Gaussian function is essential for reaching the lower bound of uncertainty. Understanding these wave functions is crucial for grasping quantum mechanics principles.
drop_out_kid
Messages
34
Reaction score
2
Homework Statement
verify the uncertainty principle by wave function of infinite well free particle(ground state)
Relevant Equations
\sai(x)=\sqrt {2/L} sin(Pi*x/L)dx
So I think I use the right approach and I get uncertainty like this:
1650392221348.png


And it's interval irrelevant(ofc),

So what kind of wave function gives us \h_bar / 2 ? I guess a normal curve? if so, why is normal curve could be? if not then what's kind of wave function can reach the lower bound
 
Physics news on Phys.org
Supplyment:
For <x^2>

1650392441964.png

for <x> it's simply L/2

for <p> it's simply 0

for <p^2> it's
1650392576119.png
by sin^2 integration.
 
drop_out_kid said:
So what kind of wave function gives us \h_bar / 2 ? I guess a normal curve? if so, why is normal curve could be? if not then what's kind of wave function can reach the lower bound
Try the ground state for the harmonic oscillator of mass ##m## and frequency ##\omega##.
 
kuruman said:
Try the ground state for the harmonic oscillator of mass ##m## and frequency ##\omega##.
Sorry I didn't get what that even is. We didn't learned that, I assume that's a ground state sinusoidal wave function?
 
drop_out_kid said:
Sorry I didn't get what that even is. We didn't learned that, I assume that's a ground state sinusoidal wave function?
You asked and I replied. It is a Gaussian, $$\psi_0(x)=\left(\frac{m\omega}{\pi \hbar}\right)^{1/4}e^{-\frac{m \omega}{2\hbar}x^2}.$$Try it.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top