Why does a free particle in an infinite well have uncertainty bigger than h/2 ?

Click For Summary
A free particle in an infinite well exhibits uncertainty greater than h/2 due to its wave function characteristics. The discussion revolves around identifying the wave function that achieves the minimum uncertainty, with a suggestion that a normal (Gaussian) curve might be the answer. The ground state of the harmonic oscillator is proposed as a potential solution, characterized by a specific Gaussian wave function. Clarification is provided that this Gaussian function is essential for reaching the lower bound of uncertainty. Understanding these wave functions is crucial for grasping quantum mechanics principles.
drop_out_kid
Messages
34
Reaction score
2
Homework Statement
verify the uncertainty principle by wave function of infinite well free particle(ground state)
Relevant Equations
\sai(x)=\sqrt {2/L} sin(Pi*x/L)dx
So I think I use the right approach and I get uncertainty like this:
1650392221348.png


And it's interval irrelevant(ofc),

So what kind of wave function gives us \h_bar / 2 ? I guess a normal curve? if so, why is normal curve could be? if not then what's kind of wave function can reach the lower bound
 
Physics news on Phys.org
Supplyment:
For <x^2>

1650392441964.png

for <x> it's simply L/2

for <p> it's simply 0

for <p^2> it's
1650392576119.png
by sin^2 integration.
 
drop_out_kid said:
So what kind of wave function gives us \h_bar / 2 ? I guess a normal curve? if so, why is normal curve could be? if not then what's kind of wave function can reach the lower bound
Try the ground state for the harmonic oscillator of mass ##m## and frequency ##\omega##.
 
kuruman said:
Try the ground state for the harmonic oscillator of mass ##m## and frequency ##\omega##.
Sorry I didn't get what that even is. We didn't learned that, I assume that's a ground state sinusoidal wave function?
 
drop_out_kid said:
Sorry I didn't get what that even is. We didn't learned that, I assume that's a ground state sinusoidal wave function?
You asked and I replied. It is a Gaussian, $$\psi_0(x)=\left(\frac{m\omega}{\pi \hbar}\right)^{1/4}e^{-\frac{m \omega}{2\hbar}x^2}.$$Try it.
 
Beams of electrons and protons move parallel to each other in the same direction. They ______. a. attract each other. b. repel each other. c. neither attract nor repel. d. the force of attraction or repulsion depends upon the speed of the beams. This is a previous-year-question of CBSE Board 2023. The answer key marks (b) as the right option. I want to know why we are ignoring Coulomb's force?