Why does a free particle in an infinite well have uncertainty bigger than h/2 ?

AI Thread Summary
A free particle in an infinite well exhibits uncertainty greater than h/2 due to its wave function characteristics. The discussion revolves around identifying the wave function that achieves the minimum uncertainty, with a suggestion that a normal (Gaussian) curve might be the answer. The ground state of the harmonic oscillator is proposed as a potential solution, characterized by a specific Gaussian wave function. Clarification is provided that this Gaussian function is essential for reaching the lower bound of uncertainty. Understanding these wave functions is crucial for grasping quantum mechanics principles.
drop_out_kid
Messages
34
Reaction score
2
Homework Statement
verify the uncertainty principle by wave function of infinite well free particle(ground state)
Relevant Equations
\sai(x)=\sqrt {2/L} sin(Pi*x/L)dx
So I think I use the right approach and I get uncertainty like this:
1650392221348.png


And it's interval irrelevant(ofc),

So what kind of wave function gives us \h_bar / 2 ? I guess a normal curve? if so, why is normal curve could be? if not then what's kind of wave function can reach the lower bound
 
Physics news on Phys.org
Supplyment:
For <x^2>

1650392441964.png

for <x> it's simply L/2

for <p> it's simply 0

for <p^2> it's
1650392576119.png
by sin^2 integration.
 
drop_out_kid said:
So what kind of wave function gives us \h_bar / 2 ? I guess a normal curve? if so, why is normal curve could be? if not then what's kind of wave function can reach the lower bound
Try the ground state for the harmonic oscillator of mass ##m## and frequency ##\omega##.
 
kuruman said:
Try the ground state for the harmonic oscillator of mass ##m## and frequency ##\omega##.
Sorry I didn't get what that even is. We didn't learned that, I assume that's a ground state sinusoidal wave function?
 
drop_out_kid said:
Sorry I didn't get what that even is. We didn't learned that, I assume that's a ground state sinusoidal wave function?
You asked and I replied. It is a Gaussian, $$\psi_0(x)=\left(\frac{m\omega}{\pi \hbar}\right)^{1/4}e^{-\frac{m \omega}{2\hbar}x^2}.$$Try it.
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top