I Why does the integral of sine of x^2 from - infinity to + infinity diverge?

  • Thread starter Thread starter jaumzaum
  • Start date Start date
  • Tags Tags
    Integral Sine
Click For Summary
The integral of sine of x^2 from -infinity to +infinity is discussed, noting that while it converges to sqrt(pi/2), the approach to evaluate it leads to divergent results. The integral is expressed in terms of the complex exponential function, and attempts to apply Fubini's theorem reveal issues with absolute integrability. The discussion highlights the confusion surrounding the limit of e^(iM) as M approaches infinity, questioning why it is considered zero despite its non-convergence. A suggestion is made to use line integrals in the complex plane for a proper evaluation. Ultimately, the conversation emphasizes the importance of understanding the conditions under which certain mathematical techniques can be applied.
jaumzaum
Messages
433
Reaction score
33
Hello guys. I was trying to evaluate the integral of sine of x^2 from - infinity to + infinity and ran into some inconsistencies. I know this integral converges to sqrt(pi/2). Can someone help me to figure out why I am getting a divergent answer?

$$ I = \int_{-\infty}^{+\infty} sin(x^2) dx = Im(\int_{-\infty}^{+\infty} e^{ix^2} dx) $$

Now let's call:

$$ A=\int_{-\infty}^{+\infty} e^{ix^2} dx $$
$$ A^2=\int_{-\infty}^{+\infty} e^{ix^2} dx \int_{-\infty}^{+\infty} e^{iy^2} dy $$
$$ A^2=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{i(x^2+y^2)} dx dy $$
$$ A^2=\int_{0}^{2\pi} \int_{0}^{+\infty} e^{ir^2}r dr d\theta $$
$$ A^2= -i\pi \left. e^{ir^2} \right|_0^{\infty} $$
$$ A^2= -i\pi (e^{i\infty}-1) $$

But we know ## lim_{M->\infty} e^{iM}## does not converge, so A^2 would not converge either!

However, if we consider ##e^{i\infty}## as being zero, we get:

$$A^2= i\pi$$
$$A=1/\sqrt{2}\pi(1+i)$$
$$I=\sqrt{\pi/2}$$

But why is ##e^{i\infty}## considered zero if ## lim_{M->\infty} e^{iM}## does not exist?
 
Last edited:
Mathematics news on Phys.org
I delete my message.
[EDIT]
Going forward your way of
A^2=i\pi(e^{iR^2}-1), R\rightarrow \infty
=-\pi \sin R^2 - i\pi(1-\cos R^2)=\pi \sqrt{2} \sqrt{1-\cos R^2}e^{i\theta}
where
\theta = \arctan \frac{1-\cos R^2}{\sin R^2}+\pi
A=\sqrt{\pi \sqrt{2} \sqrt{1-\cos R^2}}e^{i\theta/2}
I=Im\ A= \sqrt{\pi \sqrt{2} \sqrt{1-\cos R^2}} sin (\theta/2)
I let Wolfram plot the graph. I draw red line y=##1/\sqrt{2}## of the expected limit.
plot integral 211226.png
 
Last edited:
This might be how to do it properly, using line integrals in the complex plane.

 
An informal way to do it would be to look at the integral: $$\int_0^\infty \sin (x^2) dx = \lim_{n \rightarrow \infty}\int_0^{\sqrt{n\pi}}\sin(x^2)dx$$Then follow your technique to get
$$A^2 = \lim_{n \rightarrow \infty}\int_0^{2\pi} \int_{-2n\pi}^{2n\pi}e^{ir^2}r dr d\theta$$Etc.
 
Last edited:
I think there is an error in ##\int_{-\infty}^{+\infty} e^{ix^2} dx \int_{-\infty}^{+\infty} e^{iy^2} dy =\int_{0}^{2\pi} \int_{0}^{\infty} e^{ir^2} r dr d\theta. ##

It looks like you're trying to apply Fubini's theorem, but that requires the integrand to be absolutely integrable, which ##e^{i(x^2+y^2)}## is not. If you try to write out the argument formally with limits, you should see what goes wrong- your integral for ##A^2## would be over a large rectangle, but you would want it to be over a disk for polar coordinates to be useful. This distinction wouldn't matter in the case that your function is absolutely integrable, because then the difference integrals over the two domains would tend to zero.
 
  • Like
Likes mfb and PeroK
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 2 ·
Replies
2
Views
420
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K