Why does the integral of sine of x^2 from - infinity to + infinity diverge?

  • Context: Undergrad 
  • Thread starter Thread starter jaumzaum
  • Start date Start date
  • Tags Tags
    Integral Sine
Click For Summary
SUMMARY

The integral of sine of x squared from negative infinity to positive infinity diverges due to the non-convergence of the limit of e^(iM) as M approaches infinity. The discussion clarifies that while the integral converges to sqrt(pi/2), the method of evaluating it using the complex exponential integral A = ∫ e^(ix^2) dx leads to inconsistencies. The application of Fubini's theorem is also questioned, as the integrand e^(i(x^2+y^2)) is not absolutely integrable, which is crucial for the validity of the double integral approach.

PREREQUISITES
  • Complex analysis, particularly the evaluation of integrals involving complex exponentials.
  • Understanding of Fubini's theorem and its requirements for integrability.
  • Knowledge of improper integrals and convergence criteria.
  • Familiarity with polar coordinates and their application in double integrals.
NEXT STEPS
  • Study the properties of complex integrals, focusing on the integral of e^(ix^2).
  • Learn about the conditions under which Fubini's theorem can be applied in complex analysis.
  • Explore the concept of absolute integrability and its implications for convergence.
  • Investigate the use of polar coordinates in evaluating double integrals, especially in the context of oscillatory integrals.
USEFUL FOR

Mathematicians, physicists, and students studying advanced calculus or complex analysis, particularly those interested in oscillatory integrals and convergence issues.

jaumzaum
Messages
433
Reaction score
33
Hello guys. I was trying to evaluate the integral of sine of x^2 from - infinity to + infinity and ran into some inconsistencies. I know this integral converges to sqrt(pi/2). Can someone help me to figure out why I am getting a divergent answer?

$$ I = \int_{-\infty}^{+\infty} sin(x^2) dx = Im(\int_{-\infty}^{+\infty} e^{ix^2} dx) $$

Now let's call:

$$ A=\int_{-\infty}^{+\infty} e^{ix^2} dx $$
$$ A^2=\int_{-\infty}^{+\infty} e^{ix^2} dx \int_{-\infty}^{+\infty} e^{iy^2} dy $$
$$ A^2=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{i(x^2+y^2)} dx dy $$
$$ A^2=\int_{0}^{2\pi} \int_{0}^{+\infty} e^{ir^2}r dr d\theta $$
$$ A^2= -i\pi \left. e^{ir^2} \right|_0^{\infty} $$
$$ A^2= -i\pi (e^{i\infty}-1) $$

But we know ## lim_{M->\infty} e^{iM}## does not converge, so A^2 would not converge either!

However, if we consider ##e^{i\infty}## as being zero, we get:

$$A^2= i\pi$$
$$A=1/\sqrt{2}\pi(1+i)$$
$$I=\sqrt{\pi/2}$$

But why is ##e^{i\infty}## considered zero if ## lim_{M->\infty} e^{iM}## does not exist?
 
Last edited:
Physics news on Phys.org
I delete my message.
[EDIT]
Going forward your way of
A^2=i\pi(e^{iR^2}-1), R\rightarrow \infty
=-\pi \sin R^2 - i\pi(1-\cos R^2)=\pi \sqrt{2} \sqrt{1-\cos R^2}e^{i\theta}
where
\theta = \arctan \frac{1-\cos R^2}{\sin R^2}+\pi
A=\sqrt{\pi \sqrt{2} \sqrt{1-\cos R^2}}e^{i\theta/2}
I=Im\ A= \sqrt{\pi \sqrt{2} \sqrt{1-\cos R^2}} sin (\theta/2)
I let Wolfram plot the graph. I draw red line y=##1/\sqrt{2}## of the expected limit.
plot integral 211226.png
 
Last edited:
This might be how to do it properly, using line integrals in the complex plane.

 
An informal way to do it would be to look at the integral: $$\int_0^\infty \sin (x^2) dx = \lim_{n \rightarrow \infty}\int_0^{\sqrt{n\pi}}\sin(x^2)dx$$Then follow your technique to get
$$A^2 = \lim_{n \rightarrow \infty}\int_0^{2\pi} \int_{-2n\pi}^{2n\pi}e^{ir^2}r dr d\theta$$Etc.
 
Last edited:
I think there is an error in ##\int_{-\infty}^{+\infty} e^{ix^2} dx \int_{-\infty}^{+\infty} e^{iy^2} dy =\int_{0}^{2\pi} \int_{0}^{\infty} e^{ir^2} r dr d\theta. ##

It looks like you're trying to apply Fubini's theorem, but that requires the integrand to be absolutely integrable, which ##e^{i(x^2+y^2)}## is not. If you try to write out the argument formally with limits, you should see what goes wrong- your integral for ##A^2## would be over a large rectangle, but you would want it to be over a disk for polar coordinates to be useful. This distinction wouldn't matter in the case that your function is absolutely integrable, because then the difference integrals over the two domains would tend to zero.
 
  • Like
Likes   Reactions: mfb and PeroK

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
713
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K