I Why Does the Negative Sign Appear in the Vector Potential Equation?

Click For Summary
The discussion revolves around the derivation of the vector potential and the confusion regarding the signs and variables involved in the equations. A key point of contention is the transition from the gradient with respect to the y-variable to the x-variable, particularly concerning the equality of various expressions. The participants highlight the need for clarity on how the gradient operator behaves when applied to different variables and under integrals. The vector identity is referenced to clarify the relationship between the terms, suggesting that proper application of the identity could resolve the confusion. Overall, the conversation seeks to clarify the mathematical steps involved in the derivation process.
deuteron
Messages
64
Reaction score
14
TL;DR
.
We have motivated the derivation of the vector potential in the following way:
1706619806217.png

However, I cannot understand where the ##-## sign in the second equality came from. I thought that it was because the gradient was with respect to the ##y##-variable, and then using the product rule one could explain the transition to the last expression, but in that case ##\nabla_{\vec y}\times\vec j(\vec y)## would have to be zero, which I am not really sure is necessarily true; and in that case I would again not understand how a ##\nabla_{\vec y}## would become a ##\nabla_{\vec x}##, since at ##\nabla\times \vec A(\vec x)## I assume ##\nabla## must be acting on the ##\vec x##
That's why I don't see how the left and right hand sides of the third, fourth, and possibly the fifts ##=## signs are equal to each other, can someone please help me?
 
Physics news on Phys.org
You know that
##\nabla_x \dfrac{1}{|x-y|}=-\dfrac{x-y}{|x-y|^3}=-\nabla_y \dfrac{1}{|x-y|}##
It follows that
##\dfrac{x-y}{|x-y|^3}=+\nabla_y \dfrac{1}{|x-y|}=-\nabla_x \dfrac{1}{|x-y|}.##

So the second equality is $$=-\frac{1}{c}\int \int \int j(y)\times\nabla_x \dfrac{1}{|x-y|}d^3y$$Does this help?
 
but in that case how do we take ##\nabla_{\vec x}## out of the integral? It wasn't cross multiplied with ##\frac 1 {|\vec x-\vec y|}##, but now it is?
 
The vector identity says
##\vec{\nabla}\times(\psi~\vec A)= \psi \vec{\nabla}\times\vec A+\vec{\nabla}\psi\times \vec A. ##
Here you identify
##\vec{\nabla}\rightarrow \vec{\nabla}_x##
##\psi \rightarrow \dfrac{1}{|x-y|}##
##\vec A \rightarrow \vec j (y)##

What do you get when you put these in the identity?
 
Thread 'Why higher speeds need more power if backward force is the same?'
Power = Force v Speed Power of my horse = 104kgx9.81m/s^2 x 0.732m/s = 1HP =746W Force/tension in rope stay the same if horse run at 0.73m/s or at 15m/s, so why then horse need to be more powerfull to pull at higher speed even if backward force at him(rope tension) stay the same? I understand that if I increase weight, it is hrader for horse to pull at higher speed because now is backward force increased, but don't understand why is harder to pull at higher speed if weight(backward force)...

Similar threads

Replies
8
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
3
Views
421
  • · Replies 12 ·
Replies
12
Views
2K
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
2
Views
2K
Replies
3
Views
1K
Replies
14
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K