Undergrad Why Does the Negative Sign Appear in the Vector Potential Equation?

Click For Summary
The discussion revolves around the derivation of the vector potential and the confusion regarding the signs and variables involved in the equations. A key point of contention is the transition from the gradient with respect to the y-variable to the x-variable, particularly concerning the equality of various expressions. The participants highlight the need for clarity on how the gradient operator behaves when applied to different variables and under integrals. The vector identity is referenced to clarify the relationship between the terms, suggesting that proper application of the identity could resolve the confusion. Overall, the conversation seeks to clarify the mathematical steps involved in the derivation process.
deuteron
Messages
64
Reaction score
14
TL;DR
.
We have motivated the derivation of the vector potential in the following way:
1706619806217.png

However, I cannot understand where the ##-## sign in the second equality came from. I thought that it was because the gradient was with respect to the ##y##-variable, and then using the product rule one could explain the transition to the last expression, but in that case ##\nabla_{\vec y}\times\vec j(\vec y)## would have to be zero, which I am not really sure is necessarily true; and in that case I would again not understand how a ##\nabla_{\vec y}## would become a ##\nabla_{\vec x}##, since at ##\nabla\times \vec A(\vec x)## I assume ##\nabla## must be acting on the ##\vec x##
That's why I don't see how the left and right hand sides of the third, fourth, and possibly the fifts ##=## signs are equal to each other, can someone please help me?
 
Physics news on Phys.org
You know that
##\nabla_x \dfrac{1}{|x-y|}=-\dfrac{x-y}{|x-y|^3}=-\nabla_y \dfrac{1}{|x-y|}##
It follows that
##\dfrac{x-y}{|x-y|^3}=+\nabla_y \dfrac{1}{|x-y|}=-\nabla_x \dfrac{1}{|x-y|}.##

So the second equality is $$=-\frac{1}{c}\int \int \int j(y)\times\nabla_x \dfrac{1}{|x-y|}d^3y$$Does this help?
 
but in that case how do we take ##\nabla_{\vec x}## out of the integral? It wasn't cross multiplied with ##\frac 1 {|\vec x-\vec y|}##, but now it is?
 
The vector identity says
##\vec{\nabla}\times(\psi~\vec A)= \psi \vec{\nabla}\times\vec A+\vec{\nabla}\psi\times \vec A. ##
Here you identify
##\vec{\nabla}\rightarrow \vec{\nabla}_x##
##\psi \rightarrow \dfrac{1}{|x-y|}##
##\vec A \rightarrow \vec j (y)##

What do you get when you put these in the identity?
 
Topic about reference frames, center of rotation, postion of origin etc Comoving ref. frame is frame that is attached to moving object, does that mean, in that frame translation and rotation of object is zero, because origin and axes(x,y,z) are fixed to object? Is it same if you place origin of frame at object center of mass or at object tail? What type of comoving frame exist? What is lab frame? If we talk about center of rotation do we always need to specified from what frame we observe?

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
575
Replies
5
Views
2K
Replies
14
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K