I Why Does the Negative Sign Appear in the Vector Potential Equation?

AI Thread Summary
The discussion revolves around the derivation of the vector potential and the confusion regarding the signs and variables involved in the equations. A key point of contention is the transition from the gradient with respect to the y-variable to the x-variable, particularly concerning the equality of various expressions. The participants highlight the need for clarity on how the gradient operator behaves when applied to different variables and under integrals. The vector identity is referenced to clarify the relationship between the terms, suggesting that proper application of the identity could resolve the confusion. Overall, the conversation seeks to clarify the mathematical steps involved in the derivation process.
deuteron
Messages
64
Reaction score
14
TL;DR Summary
.
We have motivated the derivation of the vector potential in the following way:
1706619806217.png

However, I cannot understand where the ##-## sign in the second equality came from. I thought that it was because the gradient was with respect to the ##y##-variable, and then using the product rule one could explain the transition to the last expression, but in that case ##\nabla_{\vec y}\times\vec j(\vec y)## would have to be zero, which I am not really sure is necessarily true; and in that case I would again not understand how a ##\nabla_{\vec y}## would become a ##\nabla_{\vec x}##, since at ##\nabla\times \vec A(\vec x)## I assume ##\nabla## must be acting on the ##\vec x##
That's why I don't see how the left and right hand sides of the third, fourth, and possibly the fifts ##=## signs are equal to each other, can someone please help me?
 
Physics news on Phys.org
You know that
##\nabla_x \dfrac{1}{|x-y|}=-\dfrac{x-y}{|x-y|^3}=-\nabla_y \dfrac{1}{|x-y|}##
It follows that
##\dfrac{x-y}{|x-y|^3}=+\nabla_y \dfrac{1}{|x-y|}=-\nabla_x \dfrac{1}{|x-y|}.##

So the second equality is $$=-\frac{1}{c}\int \int \int j(y)\times\nabla_x \dfrac{1}{|x-y|}d^3y$$Does this help?
 
but in that case how do we take ##\nabla_{\vec x}## out of the integral? It wasn't cross multiplied with ##\frac 1 {|\vec x-\vec y|}##, but now it is?
 
The vector identity says
##\vec{\nabla}\times(\psi~\vec A)= \psi \vec{\nabla}\times\vec A+\vec{\nabla}\psi\times \vec A. ##
Here you identify
##\vec{\nabla}\rightarrow \vec{\nabla}_x##
##\psi \rightarrow \dfrac{1}{|x-y|}##
##\vec A \rightarrow \vec j (y)##

What do you get when you put these in the identity?
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Back
Top