Why does the population go to extinction if the solution is real?

Click For Summary
SUMMARY

The population dynamics of a species under predation are modeled by the difference equation \( u_{t+1}=\frac{au_t^2}{b^2+u_t^2} \) with \( a > 0 \). The equilibria are determined as \( u_* = 0 \) and \( u_* = \frac{a \pm \sqrt{a^2 - 4b^2}}{2} \). If \( a^2 > 4b^2 \), the population can be driven to extinction if it falls below a critical size, specifically \( x_{-} = \frac{a - \sqrt{a^2 - 4b^2}}{2} \). The analysis shows that initial population sizes below this critical point lead to extinction, while sizes above it can stabilize at a positive equilibrium.

PREREQUISITES
  • Understanding of difference equations and their applications in population dynamics.
  • Familiarity with concepts of equilibria and stability in mathematical models.
  • Knowledge of quadratic equations and their properties.
  • Basic grasp of recursive relations and their implications in modeling.
NEXT STEPS
  • Explore the implications of the critical size \( x_{-} \) in ecological modeling.
  • Study the stability analysis of fixed points in difference equations.
  • Learn about the cobweb plot technique for visualizing population dynamics.
  • Investigate other forms of population models, such as logistic growth and their equilibria.
USEFUL FOR

Ecologists, mathematicians, and researchers in population dynamics who are interested in understanding the effects of predation on species extinction and stability analysis in mathematical models.

Dustinsfl
Messages
2,217
Reaction score
5
The population of a certain species subjected to a specific kind of predation is modeled
by the difference equation

$$
u_{t+1}=\frac{au_t^2}{b^2+u_t^2}, \quad a>0.
$$

Determine the equilibria and show that if $a^2 > 4b^2$ it is possible for the populationto be driven to extinction if it becomes less than a critical size which you should find.

So the steady states are

$u_*=0$

$u_*=\frac{a\pm\sqrt{a^2-4b^2}}{2}$

So why if the solution is real, does the population go to extinction?
 
Physics news on Phys.org
dwsmith said:
The population of a certain species subjected to a specific kind of predation is modeled
by the difference equation

$$
u_{t+1}=\frac{au_t^2}{b^2+u_t^2}, \quad a>0.
$$

Determine the equilibria and show that if $a^2 > 4b^2$ it is possible for the populationto be driven to extinction if it becomes less than a critical size which you should find.

So the steady states are

$u_*=0$

$u_*=\frac{a\pm\sqrt{a^2-4b^2}}{2}$

So why if the solution is real, does the population go to extinction?

The recursive relation can be written in the form...

$\displaystyle \Delta_{n}=u_{n+1}-u_{n}= - \frac{b^{2}\ u_{n} - a\ u^{2}_{n} - u^{3}_{n}}{b^{2}+u^{2}_{n}}= f(u_{n})\ ,\ a>0$ (1)

Under the hypothesis that is $a^{2}>4\ b^{2}$ and that is $u_{n} \ge 0\ \forall n$ the function f(x) has two 'attractive fixed points' in $x_{0}=0$ and $\displaystyle x_{+}= \frac{a+ \sqrt{a^{2}-4 b^{2}}}{2}$ and a 'repulsive fixed point' in $\displaystyle x_{-}= \frac{a- \sqrt{a^{2}-4 b^{2}}}{2}$. The solution of (1) depends from the 'initial state' $u_{0}$ and precisely...

a) if $0 \le u_{0} < x_{-}$ the sequence has limit $x_{0}=0$...

b) if $u_{0}=x_{-}$ the sequence has limit $x_{-}$...

c) if $u_{0}>x_{-}$ the sequence has limit $x_{+}$...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
The recursive relation can be written in the form...

$\displaystyle \Delta_{n}=u_{n+1}-u_{n}= - \frac{b^{2}\ u_{n} - a\ u^{2}_{n} - u^{3}_{n}}{b^{2}+u^{2}_{n}}= f(u_{n})\ ,\ a>0$ (1)

Under the hypothesis that is $a^{2}>4\ b^{2}$ and that is $u_{n} \ge 0\ \forall n$ the function f(x) has two 'attractive fixed points' in $x_{0}=0$ and $\displaystyle x_{+}= \frac{a+ \sqrt{a^{2}-4 b^{2}}}{2}$ and a 'repulsive fixed point' in $\displaystyle x_{-}= \frac{a- \sqrt{a^{2}-4 b^{2}}}{2}$. The solution of (1) depends from the 'initial state' $u_{0}$ and precisely...

a) if $0 \le u_{0} < x_{-}$ the sequence has limit $x_{0}=0$...

b) if $u_{0}=x_{-}$ the sequence has limit $x_{-}$...

c) if $u_{0}>x_{-}$ the sequence has limit $x_{+}$...

Kind regards

$\chi$ $\sigma$

Unfortunately, I just don't understand what you are doing to help in this post (or the others). I am not saying you aren't helping. I just don't understand your procedures and methods.
 
dwsmith said:
Unfortunately, I just don't understand what you are doing to help in this post (or the others). I am not saying you aren't helping. I just don't understand your procedures and methods.

On MHF I wrote a tutorial section where the general procedure for solving this type of recursive relations was illustrated ... 'unfortunately' MHF collapsed and now, with the approval of Administrators, I can try to rewrite the same tutorial section on MHB...

Kind regards

$\chi$ $\sigma$
 
dwsmith said:
The population of a certain species subjected to a specific kind of predation is modeled
by the difference equation

$$
u_{t+1}=\frac{au_t^2}{b^2+u_t^2}, \quad a>0.
$$

Determine the equilibria and show that if $a^2 > 4b^2$ it is possible for the populationto be driven to extinction if it becomes less than a critical size which you should find.

So the steady states are

$u_*=0$

$u_*=\frac{a\pm\sqrt{a^2-4b^2}}{2}$

So why if the solution is real, does the population go to extinction?

Consider:

\[ \frac{u_{t+1}}{u_t}=\frac{au_t}{b^2+u_t^2}\]

\( \{u_t\} \) is a decreasing sequence if the above is less than \(1\). So solve:

\[ \frac{au_t}{b^2+u_t^2}<1\]

and the result will follow (you will need to justify it going to zero rather than decreasing to a non-zero limit but that is easily done).

CB
 
CaptainBlack said:
Consider:

\[ \frac{u_{t+1}}{u_t}=\frac{au_t}{b^2+u_t^2}\]

\( \{u_t\} \) is a decreasing sequence if the above is less than \(1\). So solve:

\[ \frac{au_t}{b^2+u_t^2}<1\]

and the result will follow (you will need to justify it going to zero rather than decreasing to a non-zero limit but that is easily done).

CB

I am not sure how or why the result follows? That leads me to the same quadratic to solve but with an inequality.

From the cob web plot, I see there is only the zero steady state when a^2<4b^2

How could there be a critical extinction point if the only steady state is 0?
 
Last edited:

Similar threads

Replies
0
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 13 ·
Replies
13
Views
5K
Replies
1
Views
6K
Replies
8
Views
6K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K