Why is ##^{2m}C_m## equivalent to ##\dfrac{2m!}{m!m!}##?

  • Thread starter Thread starter RChristenk
  • Start date Start date
  • Tags Tags
    Binomial theorem
Click For Summary

Homework Help Overview

The discussion revolves around the equivalence of the binomial coefficient ##^{2m}C_m## and the expression ##\dfrac{2m!}{m!m!}##. Participants are exploring the definitions and simplifications of binomial coefficients in the context of combinatorial mathematics.

Discussion Character

  • Conceptual clarification, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Some participants attempt to clarify the definition of the binomial coefficient and its simplifications. Others raise questions about the correctness of the notation used in the expressions, particularly regarding the factorial notation.

Discussion Status

The conversation includes attempts to verify the correctness of the expressions and definitions. There is acknowledgment of potential errors in notation, and some participants are engaging in a back-and-forth to clarify these points without reaching a consensus on the notation issue.

Contextual Notes

Participants are addressing a specific notation issue regarding factorials and are considering the implications of these notational differences on the equivalence of the expressions discussed.

RChristenk
Messages
73
Reaction score
9
Homework Statement
Why is ##^{2m}C_m## equivalent to ##\dfrac{2m!}{m!m!}##?
Relevant Equations
Elementary combination principles
By definition, ##^nC_r=\dfrac{n(n-1)(n-2)...(n-r+1)}{r!}##. This can be simplified to ##^nC_r=\dfrac{n!}{r!(n-r)!}##, which leads to ##^{2m}C_m=\dfrac{2m!}{m!m!}##.

But I can't see how from the original equation ##^{2m}C_m=\dfrac{(2m)(2m-1)(2m-2)...(m+1)}{m!}## is equivalent to ##\dfrac{2m!}{m!m!}##.
 
Physics news on Phys.org
What do you mean? Your formula is incorrect. It has to be ##(2m)!## and not ##2m!##
\begin{align*}
^{2m}C_m&=\dfrac{(2m)(2m-1)(2m-2)...(m+1)}{m!}\\&=\dfrac{(2m)(2m-1)(2m-2)...(m+1)\cdot m}{m!\cdot m}\\
&=\dfrac{(2m)(2m-1)(2m-2)...(m+1)\cdot m\cdot (m-1)}{m!\cdot m\cdot (m-1)}\\
&=\dfrac{(2m)(2m-1)(2m-2)...(m+1)\cdot m\cdot (m-1)\cdot (m-2)}{m!\cdot m\cdot (m-1)\cdot (m-2)}\\
&=\dfrac{(2m)(2m-1)(2m-2)...(m+1)\cdot m\cdot (m-1)\cdot (m-3)\cdot (m-3)}{m!\cdot m\cdot (m-1)\cdot (m-3)\cdot (m-3)}\\
&\vdots \\
&=\dfrac{(2m)(2m-1)(2m-2)...(m+1)\cdot m\cdot (m-1)\cdot (m-3)\cdot (m-3)\cdots 2\cdot 1}{m!\cdot m\cdot (m-1)\cdot (m-3)\cdot (m-3)\cdots 2\cdot 1}\\
&=\dfrac{(2m)!}{m!m!}
\end{align*}
 
fresh_42 said:
What do you mean? Your formula is incorrect. It has to be (2m)! and not 2m!
I'm pretty sure that (2m)! is what this poster meant, but wrote incorrectly as 2m!.
RChristenk said:
By definition, ##^nC_r=\dfrac{n(n-1)(n-2)...(n-r+1)}{r!}##. This can be simplified to ##^nC_r=\dfrac{n!}{r!(n-r)!}##, which leads to ##^{2m}C_m=\dfrac{2m!}{m!m!}##.

But I can't see how from the original equation ##^{2m}C_m=\dfrac{(2m)(2m-1)(2m-2)...(m+1)}{m!}## is equivalent to ##\dfrac{2m!}{m!m!}##.
Multiply numerator and denominator by m!.
 
fresh_42 said:
What do you mean? Your formula is incorrect. It has to be ##(2m)!## and not ##2m!##
\begin{align*}
^{2m}C_m&=\dfrac{(2m)(2m-1)(2m-2)...(m+1)}{m!}\\&=\dfrac{(2m)(2m-1)(2m-2)...(m+1)\cdot m}{m!\cdot m}\\
&=\dfrac{(2m)(2m-1)(2m-2)...(m+1)\cdot m\cdot (m-1)}{m!\cdot m\cdot (m-1)}\\
&=\dfrac{(2m)(2m-1)(2m-2)...(m+1)\cdot m\cdot (m-1)\cdot (m-2)}{m!\cdot m\cdot (m-1)\cdot (m-2)}\\
&=\dfrac{(2m)(2m-1)(2m-2)...(m+1)\cdot m\cdot (m-1)\cdot (m-3)\cdot (m-3)}{m!\cdot m\cdot (m-1)\cdot (m-3)\cdot (m-3)}\\
&\vdots \\
&=\dfrac{(2m)(2m-1)(2m-2)...(m+1)\cdot m\cdot (m-1)\cdot (m-3)\cdot (m-3)\cdots 2\cdot 1}{m!\cdot m\cdot (m-1)\cdot (m-3)\cdot (m-3)\cdots 2\cdot 1}\\
&=\dfrac{(2m)!}{m!m!}
\end{align*}
Yes you are correct I should've wrote ##(2m)!##. Thanks for your answer!
 
RChristenk said:
Yes you are correct I should've wrote ##(2m)!##. Thanks for your answer!
You should've written!
 
martinbn said:
You should've written!
I'm sorry I didn't write ##(2m)!##. I will in the future do my earnest to double-check my work in the future. Please don't take offense at my negligence.
 
RChristenk said:
I'm sorry I didn't write ##(2m)!##. I will in the future do my earnest to double-check my work in the future. Please don't take offense at my negligence.
You misuderstood. I was pedantic about "I should've wrote".
 
  • Like
  • Haha
Likes   Reactions: e_jane and SammyS

Similar threads

  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
13
Views
2K
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K