Why is dividing by zero impossible in math?

Click For Summary

Discussion Overview

The discussion centers around the mathematical reasoning behind the impossibility of dividing by zero, exploring both theoretical and conceptual aspects of the topic.

Discussion Character

  • Conceptual clarification
  • Technical explanation
  • Debate/contested

Main Points Raised

  • One participant questions the mathematical rationale for why division by zero is impossible, specifically asking for a deeper explanation.
  • Another participant illustrates the concept by stating that dividing 5 by 0 translates to asking how many zeros can sum to 5, concluding that it is impossible to reach 5 through addition of zeros.
  • A participant explains that the expression "\frac{a}{0}= c" leads to the equation "a= 0*c", which cannot hold true if a is non-zero, thus it is deemed "undefined".
  • This same participant distinguishes between "\frac{a}{0}" for non-zero a and "\frac{0}{0}", noting that the latter is "undetermined" because it can equal any number.
  • The discussion includes a reference to limits in calculus, where if the denominator approaches zero while the numerator approaches a non-zero value, the limit does not exist, whereas if both approach zero, a limit may still be determined.

Areas of Agreement / Disagreement

Participants express various viewpoints on the nature of division by zero, with some agreeing on the undefined nature of "\frac{a}{0}" while others highlight the distinction with "\frac{0}{0}". The discussion remains unresolved regarding the broader implications and interpretations of these concepts.

Contextual Notes

The discussion touches on limits in calculus, but does not resolve the implications of these concepts in broader mathematical contexts. There are also repeated assertions and clarifications that may indicate varying interpretations of the definitions involved.

mathdad
Messages
1,280
Reaction score
0
We know division by zero is not possible but what is the math reason why it is impossible to divide by zero?
 
Mathematics news on Phys.org
Let's say you wanted to do 5/0, then you're asking "how many 0's are there in 5?"

Well, try adding up 0's until you get to 5...

Hang on, 0 + 0 = 0... If I keep adding 0 we still stay at 0...

How can we ever possibly get to 5?
 
Saying that "\frac{a}{0}= c" is equivalent to "a= 0*c". But 0 times anything is 0 so that would say a= 0.

In fact, some texts make a distinction between \frac{a}{0}, for a non-zero, and \frac{0}{0}. If a\ne 0 then \frac{a}{0}= c, for any number, c, is equivalent to a= 0*c= 0 which is false. There is NO number c that satisfies that so we say it is "undefined" or simply impossible.<br /> <br /> On the other hand, \frac{0}{0}= c is equivalent to 0= 0*c= 0 which <b>is</b> true- but is true for <b>any</b> number c. There is no unique number c such that this is true so we say that it is "undetermined".<br /> <br /> The difference is really only important in "limits". If I am trying to find \lim_{x\to a}\frac{f(x)}{g(x)} and find that g, separately, goes to 0 while f goes to a non-zero number, I have the case \frac{a}{0} for a non-zero: there is no such limit. But If both f and g go to 0 then there still might be a limit. For example, if f(x)= x^2- 9 and g(x)= x- 3 both f(3)= 0 and g(3)= 0. But for x <b>not</b> equal to 0, \frac{x^2- 9}{x- 3}= \frac{(x- 3)(x+ 3)}{x- 3}= x+ 3 so \lim_{x\to 3}\frac{x^2- 9}{x- 3}= \lim_{x\to 3} x+ 3= 6.<br /> <br /> - - - Updated - - -<br /> <br /> Saying that "\frac{a}{0}= c" is equivalent to "a= 0*c". But 0 times anything is 0 so that would say a= 0.<br /> <br /> In fact, some texts make a distinction between \frac{a}{0}, for a non-zero, and \frac{0}{0}. If a\ne 0 then \frac{a}{0}= c, for any number, c, is equivalent to a= 0*c= 0 which is false. There is NO number c that satisfies that so we say it is "undefined" or simply impossible.<br /> <br /> On the other hand, \frac{0}{0}= c is equivalent to 0= 0*c= 0 which <b>is</b> true- but is true for <b>any</b> number c. There is no unique number c such that this is true so we say that it is "undetermined".<br /> <br /> The difference is really only important in "limits". If I am trying to find \lim_{x\to a}\frac{f(x)}{g(x)} and find that g, separately, goes to 0 while f goes to a non-zero number, I have the case \frac{a}{0} for a non-zero: there is no such limit. But If both f and g go to 0 then there still might be a limit. For example, if f(x)= x^2- 9 and g(x)= x- 3 both f(3)= 0 and g(3)= 0. But for x <b>not</b> equal to 0, \frac{x^2- 9}{x- 3}= \frac{(x- 3)(x+ 3)}{x- 3}= x+ 3 so \lim_{x\to 3}\frac{x^2- 9}{x- 3}= \lim_{x\to 3} x+ 3= 6.<br /> <br /> - - - Updated - - -<br /> <br /> Saying that "\frac{a}{0}= c" is equivalent to "a= 0*c". But 0 times anything is 0 so that would say a= 0.<br /> <br /> In fact, some texts make a distinction between \frac{a}{0}, for a non-zero, and \frac{0}{0}. If a\ne 0 then \frac{a}{0}= c, for any number, c, is equivalent to a= 0*c= 0 which is false. There is NO number c that satisfies that so we say it is "undefined" or simply impossible.<br /> <br /> On the other hand, \frac{0}{0}= c is equivalent to 0= 0*c= 0 which <b>is</b> true- but is true for <b>any</b> number c. There is no unique number c such that this is true so we say that it is "undetermined".<br /> <br /> The difference is really only important in "limits". If I am trying to find \lim_{x\to a}\frac{f(x)}{g(x)} and find that g, separately, goes to 0 while f goes to a non-zero number, I have the case \frac{a}{0} for a non-zero: there is no such limit. But If both f and g go to 0 then there still might be a limit. For example, if f(x)= x^2- 9 and g(x)= x- 3 both f(3)= 0 and g(3)= 0. But for x <b>not</b> equal to 0, \frac{x^2- 9}{x- 3}= \frac{(x- 3)(x+ 3)}{x- 3}= x+ 3 so \lim_{x\to 3}\frac{x^2- 9}{x- 3}= \lim_{x\to 3} x+ 3= 6.<br /> <br /> - - - Updated - - -<br /> <br /> Saying that "\frac{a}{0}= c" is equivalent to "a= 0*c". But 0 times anything is 0 so that would say a= 0.<br /> <br /> In fact, some texts make a distinction between \frac{a}{0}, for a non-zero, and \frac{0}{0}. If a\ne 0 then \frac{a}{0}= c, for any number, c, is equivalent to a= 0*c= 0 which is false. There is NO number c that satisfies that so we say it is "undefined" or simply impossible.<br /> <br /> On the other hand, \frac{0}{0}= c is equivalent to 0= 0*c= 0 which <b>is</b> true- but is true for <b>any</b> number c. There is no unique number c such that this is true so we say that it is "undetermined".<br /> <br /> The difference is really only important in "limits". If I am trying to find \lim_{x\to a}\frac{f(x)}{g(x)} and find that g, separately, goes to 0 while f goes to a non-zero number, I have the case \frac{a}{0} for a non-zero: there is no such limit. But If both f and g go to 0 then there still might be a limit. For example, if f(x)= x^2- 9 and g(x)= x- 3 both f(3)= 0 and g(3)= 0. But for x <b>not</b> equal to 0, \frac{x^2- 9}{x- 3}= \frac{(x- 3)(x+ 3)}{x- 3}= x+ 3 so \lim_{x\to 3}\frac{x^2- 9}{x- 3}= \lim_{x\to 3} x+ 3= 6.<br /> <br /> - - - Updated - - -<br /> <br /> Saying that "\frac{a}{0}= c" is equivalent to "a= 0*c". But 0 times anything is 0 so that would say a= 0.<br /> <br /> In fact, some texts make a distinction between \frac{a}{0}, for a non-zero, and \frac{0}{0}. If a\ne 0 then \frac{a}{0}= c, for any number, c, is equivalent to a= 0*c= 0 which is false. There is NO number c that satisfies that so we say it is "undefined" or simply impossible.<br /> <br /> On the other hand, \frac{0}{0}= c is equivalent to 0= 0*c= 0 which <b>is</b> true- but is true for <b>any</b> number c. There is no unique number c such that this is true so we say that it is "undetermined".<br /> <br /> The difference is really only important in "limits". If I am trying to find \lim_{x\to a}\frac{f(x)}{g(x)} and find that g, separately, goes to 0 while f goes to a non-zero number, I have the case \frac{a}{0} for a non-zero: there is no such limit. But If both f and g go to 0 then there still might be a limit. For example, if f(x)= x^2- 9 and g(x)= x- 3 both f(3)= 0 and g(3)= 0. But for x <b>not</b> equal to 0, \frac{x^2- 9}{x- 3}= \frac{(x- 3)(x+ 3)}{x- 3}= x+ 3 so \lim_{x\to 3}\frac{x^2- 9}{x- 3}= \lim_{x\to 3} x+ 3= 6.<br /> <br /> - - - Updated - - -<br /> <br /> Saying that "\frac{a}{0}= c" is equivalent to "a= 0*c". But 0 times anything is 0 so that would say a= 0.<br /> <br /> In fact, some texts make a distinction between \frac{a}{0}, for a non-zero, and \frac{0}{0}. If a\ne 0 then \frac{a}{0}= c, for any number, c, is equivalent to a= 0*c= 0 which is false. There is NO number c that satisfies that so we say it is "undefined" or simply impossible.<br /> <br /> On the other hand, \frac{0}{0}= c is equivalent to 0= 0*c= 0 which <b>is</b> true- but is true for <b>any</b> number c. There is no unique number c such that this is true so we say that it is "undetermined".<br /> <br /> The difference is really only important in "limits". If I am trying to find \lim_{x\to a}\frac{f(x)}{g(x)} and find that g, separately, goes to 0 while f goes to a non-zero number, I have the case \frac{a}{0} for a non-zero: there is no such limit. But If both f and g go to 0 then there still might be a limit. For example, if f(x)= x^2- 9 and g(x)= x- 3 both f(3)= 0 and g(3)= 0. But for x <b>not</b> equal to 0, \frac{x^2- 9}{x- 3}= \frac{(x- 3)(x+ 3)}{x- 3}= x+ 3 so \lim_{x\to 3}\frac{x^2- 9}{x- 3}= \lim_{x\to 3} x+ 3= 6.<br /> <br /> - - - Updated - - -<br /> <br /> Saying that "\frac{a}{0}= c" is equivalent to "a= 0*c". But 0 times anything is 0 so that would say a= 0.<br /> <br /> In fact, some texts make a distinction between \frac{a}{0}, for a non-zero, and \frac{0}{0}. If a\ne 0 then \frac{a}{0}= c, for any number, c, is equivalent to a= 0*c= 0 which is false. There is NO number c that satisfies that so we say it is "undefined" or simply impossible.<br /> <br /> On the other hand, \frac{0}{0}= c is equivalent to 0= 0*c= 0 which <b>is</b> true- but is true for <b>any</b> number c. There is no unique number c such that this is true so we say that it is "undetermined".<br /> <br /> The difference is really only important in "limits". If I am trying to find \lim_{x\to a}\frac{f(x)}{g(x)} and find that g, separately, goes to 0 while f goes to a non-zero number, I have the case \frac{a}{0} for a non-zero: there is no such limit. But If both f and g go to 0 then there still might be a limit. For example, if f(x)= x^2- 9 and g(x)= x- 3 both f(3)= 0 and g(3)= 0. But for x <b>not</b> equal to 0, \frac{x^2- 9}{x- 3}= \frac{(x- 3)(x+ 3)}{x- 3}= x+ 3 so \lim_{x\to 3}\frac{x^2- 9}{x- 3}= \lim_{x\to 3} x+ 3= 6.
 
Great information.

- - - Updated - - -

Say there are 5 people in a particular classroom. They came to class without a pencil. If the principal walks into the classroom and tells me to distribute one pencil per student but I have no pencils, no one will get a pencil. How can I divide a number by nothing? So, number ÷ nothing = undefined.
 

Similar threads

  • · Replies 47 ·
2
Replies
47
Views
6K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 40 ·
2
Replies
40
Views
7K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 36 ·
2
Replies
36
Views
5K
Replies
32
Views
6K
  • · Replies 3 ·
Replies
3
Views
2K