Saying that "\frac{a}{0}= c" is equivalent to "a= 0*c". But 0 times anything is 0 so that would say a= 0.
In fact, some texts make a distinction between \frac{a}{0}, for a non-zero, and \frac{0}{0}. If a\ne 0 then \frac{a}{0}= c, for any number, c, is equivalent to a= 0*c= 0 which is false. There is NO number c that satisfies that so we say it is &quot;undefined&quot; or simply impossible.<br />
<br />
On the other hand, \frac{0}{0}= c is equivalent to 0= 0*c= 0 which <b>is</b> true- but is true for <b>any</b> number c. There is no unique number c such that this is true so we say that it is &quot;undetermined&quot;.<br />
<br />
The difference is really only important in &quot;limits&quot;. If I am trying to find \lim_{x\to a}\frac{f(x)}{g(x)} and find that g, separately, goes to 0 while f goes to a non-zero number, I have the case \frac{a}{0} for a non-zero: there is no such limit. But If both f and g go to 0 then there still might be a limit. For example, if f(x)= x^2- 9 and g(x)= x- 3 both f(3)= 0 and g(3)= 0. But for x <b>not</b> equal to 0, \frac{x^2- 9}{x- 3}= \frac{(x- 3)(x+ 3)}{x- 3}= x+ 3 so \lim_{x\to 3}\frac{x^2- 9}{x- 3}= \lim_{x\to 3} x+ 3= 6.<br />
<br />
- - - Updated - - -<br />
<br />
Saying that &quot;\frac{a}{0}= c&quot; is equivalent to &quot;a= 0*c&quot;. But 0 times anything is 0 so that would say a= 0.<br />
<br />
In fact, some texts make a distinction between \frac{a}{0}, for a non-zero, and \frac{0}{0}. If a\ne 0 then \frac{a}{0}= c, for any number, c, is equivalent to a= 0*c= 0 which is false. There is NO number c that satisfies that so we say it is &amp;amp;quot;undefined&amp;amp;quot; or simply impossible.&amp;lt;br /&amp;gt;
&amp;lt;br /&amp;gt;
On the other hand, \frac{0}{0}= c is equivalent to 0= 0*c= 0 which &amp;lt;b&amp;gt;is&amp;lt;/b&amp;gt; true- but is true for &amp;lt;b&amp;gt;any&amp;lt;/b&amp;gt; number c. There is no unique number c such that this is true so we say that it is &amp;amp;quot;undetermined&amp;amp;quot;.&amp;lt;br /&amp;gt;
&amp;lt;br /&amp;gt;
The difference is really only important in &amp;amp;quot;limits&amp;amp;quot;. If I am trying to find \lim_{x\to a}\frac{f(x)}{g(x)} and find that g, separately, goes to 0 while f goes to a non-zero number, I have the case \frac{a}{0} for a non-zero: there is no such limit. But If both f and g go to 0 then there still might be a limit. For example, if f(x)= x^2- 9 and g(x)= x- 3 both f(3)= 0 and g(3)= 0. But for x &amp;lt;b&amp;gt;not&amp;lt;/b&amp;gt; equal to 0, \frac{x^2- 9}{x- 3}= \frac{(x- 3)(x+ 3)}{x- 3}= x+ 3 so \lim_{x\to 3}\frac{x^2- 9}{x- 3}= \lim_{x\to 3} x+ 3= 6.&amp;lt;br /&amp;gt;
&amp;lt;br /&amp;gt;
- - - Updated - - -&amp;lt;br /&amp;gt;
&amp;lt;br /&amp;gt;
Saying that &amp;amp;quot;\frac{a}{0}= c&amp;amp;quot; is equivalent to &amp;amp;quot;a= 0*c&amp;amp;quot;. But 0 times anything is 0 so that would say a= 0.&amp;lt;br /&amp;gt;
&amp;lt;br /&amp;gt;
In fact, some texts make a distinction between \frac{a}{0}, for a non-zero, and \frac{0}{0}. If a\ne 0 then \frac{a}{0}= c, for any number, c, is equivalent to a= 0*c= 0 which is false. There is NO number c that satisfies that so we say it is &amp;amp;amp;amp;quot;undefined&amp;amp;amp;amp;quot; or simply impossible.&amp;amp;amp;lt;br /&amp;amp;amp;gt;
&amp;amp;amp;lt;br /&amp;amp;amp;gt;
On the other hand, \frac{0}{0}= c is equivalent to 0= 0*c= 0 which &amp;amp;amp;lt;b&amp;amp;amp;gt;is&amp;amp;amp;lt;/b&amp;amp;amp;gt; true- but is true for &amp;amp;amp;lt;b&amp;amp;amp;gt;any&amp;amp;amp;lt;/b&amp;amp;amp;gt; number c. There is no unique number c such that this is true so we say that it is &amp;amp;amp;amp;quot;undetermined&amp;amp;amp;amp;quot;.&amp;amp;amp;lt;br /&amp;amp;amp;gt;
&amp;amp;amp;lt;br /&amp;amp;amp;gt;
The difference is really only important in &amp;amp;amp;amp;quot;limits&amp;amp;amp;amp;quot;. If I am trying to find \lim_{x\to a}\frac{f(x)}{g(x)} and find that g, separately, goes to 0 while f goes to a non-zero number, I have the case \frac{a}{0} for a non-zero: there is no such limit. But If both f and g go to 0 then there still might be a limit. For example, if f(x)= x^2- 9 and g(x)= x- 3 both f(3)= 0 and g(3)= 0. But for x &amp;amp;amp;lt;b&amp;amp;amp;gt;not&amp;amp;amp;lt;/b&amp;amp;amp;gt; equal to 0, \frac{x^2- 9}{x- 3}= \frac{(x- 3)(x+ 3)}{x- 3}= x+ 3 so \lim_{x\to 3}\frac{x^2- 9}{x- 3}= \lim_{x\to 3} x+ 3= 6.&amp;amp;amp;lt;br /&amp;amp;amp;gt;
&amp;amp;amp;lt;br /&amp;amp;amp;gt;
- - - Updated - - -&amp;amp;amp;lt;br /&amp;amp;amp;gt;
&amp;amp;amp;lt;br /&amp;amp;amp;gt;
Saying that &amp;amp;amp;amp;quot;\frac{a}{0}= c&amp;amp;amp;amp;quot; is equivalent to &amp;amp;amp;amp;quot;a= 0*c&amp;amp;amp;amp;quot;. But 0 times anything is 0 so that would say a= 0.&amp;amp;amp;lt;br /&amp;amp;amp;gt;
&amp;amp;amp;lt;br /&amp;amp;amp;gt;
In fact, some texts make a distinction between \frac{a}{0}, for a non-zero, and \frac{0}{0}. If a\ne 0 then \frac{a}{0}= c, for any number, c, is equivalent to a= 0*c= 0 which is false. There is NO number c that satisfies that so we say it is &amp;amp;amp;amp;amp;amp;quot;undefined&amp;amp;amp;amp;amp;amp;quot; or simply impossible.&amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;gt;
&amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;gt;
On the other hand, \frac{0}{0}= c is equivalent to 0= 0*c= 0 which &amp;amp;amp;amp;amp;lt;b&amp;amp;amp;amp;amp;gt;is&amp;amp;amp;amp;amp;lt;/b&amp;amp;amp;amp;amp;gt; true- but is true for &amp;amp;amp;amp;amp;lt;b&amp;amp;amp;amp;amp;gt;any&amp;amp;amp;amp;amp;lt;/b&amp;amp;amp;amp;amp;gt; number c. There is no unique number c such that this is true so we say that it is &amp;amp;amp;amp;amp;amp;quot;undetermined&amp;amp;amp;amp;amp;amp;quot;.&amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;gt;
&amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;gt;
The difference is really only important in &amp;amp;amp;amp;amp;amp;quot;limits&amp;amp;amp;amp;amp;amp;quot;. If I am trying to find \lim_{x\to a}\frac{f(x)}{g(x)} and find that g, separately, goes to 0 while f goes to a non-zero number, I have the case \frac{a}{0} for a non-zero: there is no such limit. But If both f and g go to 0 then there still might be a limit. For example, if f(x)= x^2- 9 and g(x)= x- 3 both f(3)= 0 and g(3)= 0. But for x &amp;amp;amp;amp;amp;lt;b&amp;amp;amp;amp;amp;gt;not&amp;amp;amp;amp;amp;lt;/b&amp;amp;amp;amp;amp;gt; equal to 0, \frac{x^2- 9}{x- 3}= \frac{(x- 3)(x+ 3)}{x- 3}= x+ 3 so \lim_{x\to 3}\frac{x^2- 9}{x- 3}= \lim_{x\to 3} x+ 3= 6.&amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;gt;
&amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;gt;
- - - Updated - - -&amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;gt;
&amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;gt;
Saying that &amp;amp;amp;amp;amp;amp;quot;\frac{a}{0}= c&amp;amp;amp;amp;amp;amp;quot; is equivalent to &amp;amp;amp;amp;amp;amp;quot;a= 0*c&amp;amp;amp;amp;amp;amp;quot;. But 0 times anything is 0 so that would say a= 0.&amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;gt;
&amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;gt;
In fact, some texts make a distinction between \frac{a}{0}, for a non-zero, and \frac{0}{0}. If a\ne 0 then \frac{a}{0}= c, for any number, c, is equivalent to a= 0*c= 0 which is false. There is NO number c that satisfies that so we say it is &amp;amp;amp;amp;amp;amp;amp;amp;quot;undefined&amp;amp;amp;amp;amp;amp;amp;amp;quot; or simply impossible.&amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;gt;
&amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;gt;
On the other hand, \frac{0}{0}= c is equivalent to 0= 0*c= 0 which &amp;amp;amp;amp;amp;amp;amp;lt;b&amp;amp;amp;amp;amp;amp;amp;gt;is&amp;amp;amp;amp;amp;amp;amp;lt;/b&amp;amp;amp;amp;amp;amp;amp;gt; true- but is true for &amp;amp;amp;amp;amp;amp;amp;lt;b&amp;amp;amp;amp;amp;amp;amp;gt;any&amp;amp;amp;amp;amp;amp;amp;lt;/b&amp;amp;amp;amp;amp;amp;amp;gt; number c. There is no unique number c such that this is true so we say that it is &amp;amp;amp;amp;amp;amp;amp;amp;quot;undetermined&amp;amp;amp;amp;amp;amp;amp;amp;quot;.&amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;gt;
&amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;gt;
The difference is really only important in &amp;amp;amp;amp;amp;amp;amp;amp;quot;limits&amp;amp;amp;amp;amp;amp;amp;amp;quot;. If I am trying to find \lim_{x\to a}\frac{f(x)}{g(x)} and find that g, separately, goes to 0 while f goes to a non-zero number, I have the case \frac{a}{0} for a non-zero: there is no such limit. But If both f and g go to 0 then there still might be a limit. For example, if f(x)= x^2- 9 and g(x)= x- 3 both f(3)= 0 and g(3)= 0. But for x &amp;amp;amp;amp;amp;amp;amp;lt;b&amp;amp;amp;amp;amp;amp;amp;gt;not&amp;amp;amp;amp;amp;amp;amp;lt;/b&amp;amp;amp;amp;amp;amp;amp;gt; equal to 0, \frac{x^2- 9}{x- 3}= \frac{(x- 3)(x+ 3)}{x- 3}= x+ 3 so \lim_{x\to 3}\frac{x^2- 9}{x- 3}= \lim_{x\to 3} x+ 3= 6.&amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;gt;
&amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;gt;
- - - Updated - - -&amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;gt;
&amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;gt;
Saying that &amp;amp;amp;amp;amp;amp;amp;amp;quot;\frac{a}{0}= c&amp;amp;amp;amp;amp;amp;amp;amp;quot; is equivalent to &amp;amp;amp;amp;amp;amp;amp;amp;quot;a= 0*c&amp;amp;amp;amp;amp;amp;amp;amp;quot;. But 0 times anything is 0 so that would say a= 0.&amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;gt;
&amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;gt;
In fact, some texts make a distinction between \frac{a}{0}, for a non-zero, and \frac{0}{0}. If a\ne 0 then \frac{a}{0}= c, for any number, c, is equivalent to a= 0*c= 0 which is false. There is NO number c that satisfies that so we say it is &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;quot;undefined&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;quot; or simply impossible.&amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;
&amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;
On the other hand, \frac{0}{0}= c is equivalent to 0= 0*c= 0 which &amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;b&amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;is&amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;/b&amp;amp;amp;amp;amp;amp;amp;amp;amp;gt; true- but is true for &amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;b&amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;any&amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;/b&amp;amp;amp;amp;amp;amp;amp;amp;amp;gt; number c. There is no unique number c such that this is true so we say that it is &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;quot;undetermined&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;quot;.&amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;
&amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;
The difference is really only important in &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;quot;limits&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;quot;. If I am trying to find \lim_{x\to a}\frac{f(x)}{g(x)} and find that g, separately, goes to 0 while f goes to a non-zero number, I have the case \frac{a}{0} for a non-zero: there is no such limit. But If both f and g go to 0 then there still might be a limit. For example, if f(x)= x^2- 9 and g(x)= x- 3 both f(3)= 0 and g(3)= 0. But for x &amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;b&amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;not&amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;/b&amp;amp;amp;amp;amp;amp;amp;amp;amp;gt; equal to 0, \frac{x^2- 9}{x- 3}= \frac{(x- 3)(x+ 3)}{x- 3}= x+ 3 so \lim_{x\to 3}\frac{x^2- 9}{x- 3}= \lim_{x\to 3} x+ 3= 6.&amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;
&amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;
- - - Updated - - -&amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;
&amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;
Saying that &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;quot;\frac{a}{0}= c&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;quot; is equivalent to &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;quot;a= 0*c&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;quot;. But 0 times anything is 0 so that would say a= 0.&amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;
&amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;
In fact, some texts make a distinction between \frac{a}{0}, for a non-zero, and \frac{0}{0}. If a\ne 0 then \frac{a}{0}= c, for any number, c, is equivalent to a= 0*c= 0 which is false. There is NO number c that satisfies that so we say it is &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;quot;undefined&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;quot; or simply impossible.&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;
&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;
On the other hand, \frac{0}{0}= c is equivalent to 0= 0*c= 0 which &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;b&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;is&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;/b&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt; true- but is true for &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;b&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;any&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;/b&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt; number c. There is no unique number c such that this is true so we say that it is &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;quot;undetermined&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;quot;.&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;
&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;
The difference is really only important in &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;quot;limits&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;quot;. If I am trying to find \lim_{x\to a}\frac{f(x)}{g(x)} and find that g, separately, goes to 0 while f goes to a non-zero number, I have the case \frac{a}{0} for a non-zero: there is no such limit. But If both f and g go to 0 then there still might be a limit. For example, if f(x)= x^2- 9 and g(x)= x- 3 both f(3)= 0 and g(3)= 0. But for x &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;b&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt;not&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;/b&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;gt; equal to 0, \frac{x^2- 9}{x- 3}= \frac{(x- 3)(x+ 3)}{x- 3}= x+ 3 so \lim_{x\to 3}\frac{x^2- 9}{x- 3}= \lim_{x\to 3} x+ 3= 6.