MHB Why Is ln(1+x) Greater Than x/(2+x) for x > 0?

  • Thread starter Thread starter Lisa91
  • Start date Start date
Lisa91
Messages
29
Reaction score
0
How to prove that for x>0
\ln(1+x) > \frac{x}{2+x} is true?
 
Physics news on Phys.org
Lisa91 said:
How to prove that for x>0
\ln(1+x) > \frac{x}{2+x} is true?

Yes, it is true. One way to prove it: denote, $f(x)=\ln(1+x) - \dfrac{x}{2+x}$, then $f'(x)=\ldots=\dfrac{x^2+2x+2}{(1+x)(2+x)^2}>0$ for all $x>0$. This means that $f$ is strictly increasing in $(0,+\infty)$. On the other hand,

$\displaystyle\lim_{x\to 0^+}f(x)=\displaystyle\lim_{x\to 0^+}\left(x+o(x)-\frac{x}{2+x}\right)=0$.
 

Similar threads

Replies
3
Views
2K
Replies
3
Views
2K
Replies
4
Views
3K
Replies
2
Views
2K
Replies
6
Views
1K
Replies
14
Views
1K
Replies
17
Views
988
Back
Top