Why Is the Current Density Inside a Sphere Constant?

Click For Summary
The discussion centers on the constant current density inside a sphere made of linear isotropic homogeneous (l.i.h) material. The electric field is derived from the potential, resulting in a current density expression that initially appears variable. However, the continuity equation indicates that the divergence of the current density must equal zero, leading to the conclusion that the current density is constant. The confusion arises regarding the direction of the final answer, which is said to point along the z-axis, despite the divergence condition not implying a constant vector. Ultimately, the key takeaway is the relationship between the electric field, current density, and the implications of the continuity equation in this context.
Nirmal Padwal
Messages
41
Reaction score
2
Homework Statement
Question: A sphere of radius a centered at origin is made of linear isotropic homogeneous conducting material. The potential on surface is maintained at values given in spherical coordinates by $$V=V_0cosθ$$ $V_0$= constant. Find the free current density $J_f$ everywhere inside.
Relevant Equations
1. $$J_f = \sigma E$$
2. $$E = - \nabla V$$
Since sphere is made of l.i.h material, $$\vec{J_f}= \sigma \vec{E}$$

We compute electric field E using
$$\vec{E} = -\nabla V$$
$$= -\nabla \left(V_0cos\theta\right)$$
$$= -\frac{\hat\theta}{r}\frac{{\partial}}{{\partial\theta}}\left(V_0cos\theta\right)$$
$$\vec{E}= \frac{V_0sin\theta}{r}\hat\theta$$
This yields, $$J_f = \displaystyle\frac{\sigma V_0 sin\theta}{r}$$
I understand that this isn't the required answer as final answer should be a constant as there is no motion of free charge $$\left(\displaystyle\frac{\partial\rho_f}{\partial t} =0\right)$$ and continuity equation yields
$$\nabla . J_f + \frac{\partial\rho_f}{\partial t}=0$$ $$\nabla . J_f = 0$$ $$J_f = \mathrm{constant}$$

But I am stuck here. Furthermore, I don't understand the required final answer is pointing in direction of z axis.
 
Physics news on Phys.org
##\nabla \cdot \vec J = 0## does not imply that ##\vec J## is constant.
 
(a) The polarisation pattern is elliptical with maximum (1,1) and minimum (-1,-1), and anticlockwise in direction. (b) I know the solution is a quarter-wave plate oriented π/4, and half-wave plate at π/16, but don't understand how to reach there. I've obtained the polarisation vector (cos π/8, isin π/8) so far. I can't find much online guidance or textbook material working through this topic, so I'd appreciate any help I can get. Also, if anyone could let me know where I can get more...

Similar threads

Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
13
Views
3K
  • · Replies 32 ·
2
Replies
32
Views
3K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K