MHB Why Is the Distributive Property Key in Simplifying Algebraic Expressions?

Click For Summary
The discussion focuses on the importance of the distributive property in simplifying algebraic expressions, specifically in the context of given equations involving an unknown real number x. The participants confirm that the distributive property justifies statements b and c, but note that statement a requires the associative property of multiplication instead. The initial assumptions about x being a real number and the definition of x² are emphasized as necessary for clarity in algebraic notation. Overall, understanding these properties is crucial for correctly simplifying and manipulating algebraic expressions.
bergausstein
Messages
191
Reaction score
0
in the following exercises, assume that x stands for an unknown real number, and assume that $x^2=x\times x$. which of the properties of real numbers justifies each of the following statement?

a. $(2x)x=2x^2$
b. $(x+3)x=x^2+3x$
c. $4(x+3)=4x+4\times 3$

my answers
a. distributive property
b. distributive property
c. distributive property.

i just don't know if my answers are complete. and I'm also bothered why this part " assume that x stands for an unknown real number, and assume that $x^2=x\times x$." is important.

thanks!
 
Last edited:
Mathematics news on Phys.org
bergausstein said:
in the following exercises, assume that x stands for an unknown real number, and assume that $x^2=x\times x$. which of the properties of real numbers justifies each of the following statement?

a. $(2x)x=2x^2$
b. $(x+3)x=x^2+3x$
c. $4(x+3)=4x+4*3$

my answers
a. distributive property
b. distributive property
c. distributive property.

i just don't know if my answers are complete. and I'm also bothered why this part " assume that x stands for an unknown real number, and assume that $x^2=x\times x$." is important.

thanks!

Hi bergausstein!

The extra assumptions are needed, since in abstract algebra you can't really assume anything. In principle you're limited to exactly what the axioms give you. Anything else needs to be specified. These assumptions are matters of notation, so that you know that squaring a number is in all respects the same as multiplying that number by itself.
Actually, the extra assumptions in this case are so standard, that I consider it a bit of overkill to mention them.

Your answers to (b) and (c) are correct. However, for (a) you will need a different axiom.

Btw, is there a reason you used a different multiplication operator in (c)?
Luckily there is only 1 multiplication operator in the field of the real numbers, but otherwise that would be ambiguous.
 
what axiom do i need for a? let me guess, is it an axiom of equality?
 
bergausstein said:
what axiom do i need for a? let me guess, is it an axiom of equality?

Axiom of equality? That's not really one of the axioms of the real numbers, although you are implicitly using the axioms that belong to an equivalence relation.

What I mean is that the distributive property is a(b+c)=ab+ac.
But if I look at (a) I have (2x)x = 2(xx).
Those do not look like they have the same structure...
 
I like Serena said:
Axiom of equality? That's not really one of the axioms of the real numbers, although you are implicitly using the axioms that belong to an equivalence relation.

What I mean is that the distributive property is a(b+c)=ab+ac.
But if I look at (a) I have (2x)x = 2(xx).
Those do not look like they have the same structure...

we can use associative property of multiplication (ab)b = a(bb) am i correct?
 
bergausstein said:
we can use associative property of multiplication (ab)b = a(bb) am i correct?

Yep!
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
1K
Replies
4
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 30 ·
2
Replies
30
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K