Why is the general solution of this form?

Click For Summary
SUMMARY

The general solution for the heat equation $$u_t = u_{xx}$$ is expressed as $$u(x,t) = \int_0^{\infty} c(\lambda) e^{-\lambda t} e^{i \sqrt{\lambda} x} d \lambda$$. This formulation arises from separating variables into spatial and temporal components, leading to the bounded solutions of $$X(x)$$ and exponential decay in time represented by $$T(t)$$. The solution incorporates linear combinations of sine and cosine functions, allowing for a continuous spectrum of solutions indexed by $$\lambda$$.

PREREQUISITES
  • Understanding of partial differential equations (PDEs)
  • Familiarity with separation of variables technique
  • Knowledge of Fourier series and transforms
  • Basic concepts of complex analysis, particularly Euler's formula
NEXT STEPS
  • Study the derivation of the heat equation and its boundary conditions
  • Learn about Fourier transforms and their application in solving PDEs
  • Explore the implications of the Sturm-Liouville theory in eigenvalue problems
  • Investigate the application of the Laplace transform in solving time-dependent PDEs
USEFUL FOR

Mathematicians, physicists, and engineers involved in heat transfer analysis, as well as students studying advanced calculus and differential equations.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)I found the following in my lecture notes:$$u_t=u_{xx}, x \in \mathbb{R}, t>0 \\ u(x,0)=f(x)$$

$$u(x,t)=X(x)T(t)$$

$$\Rightarrow \frac{T'(t)}{T(t)}=\frac{X''(x)}{X(x)}=-\lambda \in \mathbb{R}$$

$$X''(x)+\lambda X(x)=0, x \in \mathbb{R}$$
$$X \text{ bounded }$$

The characteristic equation is $\rho^2+ \lambda=0 \Rightarrow \rho^2=-\lambda$

  • $\lambda<0$: $X(x)=c_1e^{ \sqrt{- \lambda}x}+c_2 e^{- \sqrt{- \lambda}x} $

    So that $X$ is bounded $\Rightarrow c_1=c_2=0$.
  • $\lambda=0$: $X(x)=c_1x+c_2 \overset{c_2=0}{\Rightarrow } X_0(x)=1$
  • $\lambda>0 \Rightarrow \rho^2= \lambda i^2 \Rightarrow \rho= \pm i \sqrt{\lambda}$

    $\Rightarrow X(x)=c_1 \cos(\sqrt{\lambda}x)+ c_2 \sin (\sqrt{\lambda} x), x \in \mathbb{R}$

    $T'(t)+ \lambda T(t)=0$

    $\Rightarrow T(t)=c e^{- \lambda t}$

    $$u_{\lambda}(x,t)=e^{- \lambda t} \cos(\sqrt{\lambda} x) \\ e^{- \lambda t} \sin(\sqrt{\lambda}x)$$

    General solution:

    $$u_1(x,t)= \int_0^{\infty} c_1(\lambda) e^{- \lambda t} \cos(\sqrt{\lambda}x)d \lambda$$

    $$u_2(x,t)= \int_0^{\infty} c_2(\lambda) e^{- \lambda t} \sin(\sqrt{\lambda}x)d \lambda$$

    $$u(x,t)= \int_0^{\infty} c(\lambda) e^{- \lambda t} e^{i \sqrt{\lambda} x} d \lambda$$

    $$( c_1, c_2: [0,+\infty) \to \mathbb{R}, c:[0,+\infty) \to \mathbb{C}$$

    Initial conditions:$$u(x,0)=f(x) \Leftrightarrow f(x)= \int_0^{\infty} c(\lambda) e^{i \sqrt{\lambda}x} d \lambda$$
    Could you explain me why in this case the general solution is of the form $u(x,t)= \int_0^{\infty} c(\lambda) e^{- \lambda t} e^{i \sqrt{\lambda} x} d \lambda$?

    Why isn't it $u(x,t)= \frac{a_0}{2}+\sum_{k=1}^{\infty} (a_k \cos (kx)+ b_k \cos (kx))$ ?
 
Physics news on Phys.org
Hey! (Smile)

evinda said:
Why isn't it $u(x,t)= \frac{a_0}{2}+\sum_{k=1}^{\infty} (a_k \cos (kx)+ b_k \cos (kx))$ ?

I think you're only taking $X(x)$ into account, while the solution is $X(x)T(t)$. (Wasntme)Let's look at it like this. (Thinking)

We found that for any $\lambda > 0$:
$$u(x,t)=X(x)T(t) = (c_1 \cos(\sqrt{\lambda}x)+ c_2 \sin (\sqrt{\lambda} x)) c e^{- \lambda t}
=C e^{-\lambda t} \cos(\sqrt{\lambda}x) + D e^{- \lambda t} \sin (\sqrt{\lambda} x)$$
is a solution.

Any linear combination with different $\lambda$'s will also be a solution.
So a more general solution is:
$$u(x,t) = \sum_i \Big[C_i e^{-\lambda_i t} \cos(\sqrt{\lambda_i}x) + D_i e^{- \lambda_i t} \sin (\sqrt{\lambda_i} x)\Big]$$
where $\lambda_i$ is any positive number, and $C_i,D_i$ are any arbitrary constants.

Letting $i$ go to infinity, we can write this as:
$$u(x,t) = \int_0^\infty \Big[C(\lambda) e^{-\lambda t} \cos(\sqrt{\lambda}x) + D(\lambda) e^{- \lambda t} \sin (\sqrt{\lambda} x)\Big]d\lambda$$
(Mmm)

Next step is to apply Euler's formula. (Thinking)
 

Similar threads

  • · Replies 28 ·
Replies
28
Views
4K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 25 ·
Replies
25
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
12
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 33 ·
2
Replies
33
Views
6K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K