MHB Why is the general solution of this form?

Click For Summary
The general solution of the heat equation is expressed as u(x,t) = ∫₀⁺∞ c(λ)e^{-λt}e^{i√λx}dλ due to the separation of variables method, where X(x) and T(t) are combined. The boundedness of X(x) leads to specific forms for λ, resulting in solutions involving sine and cosine functions. The discussion highlights that any linear combination of these solutions for different λ values can form a more general solution. Ultimately, the integration over λ allows for a continuous spectrum of solutions, which is essential for satisfying initial conditions. This approach effectively captures the behavior of the system over time and space.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)I found the following in my lecture notes:$$u_t=u_{xx}, x \in \mathbb{R}, t>0 \\ u(x,0)=f(x)$$

$$u(x,t)=X(x)T(t)$$

$$\Rightarrow \frac{T'(t)}{T(t)}=\frac{X''(x)}{X(x)}=-\lambda \in \mathbb{R}$$

$$X''(x)+\lambda X(x)=0, x \in \mathbb{R}$$
$$X \text{ bounded }$$

The characteristic equation is $\rho^2+ \lambda=0 \Rightarrow \rho^2=-\lambda$

  • $\lambda<0$: $X(x)=c_1e^{ \sqrt{- \lambda}x}+c_2 e^{- \sqrt{- \lambda}x} $

    So that $X$ is bounded $\Rightarrow c_1=c_2=0$.
  • $\lambda=0$: $X(x)=c_1x+c_2 \overset{c_2=0}{\Rightarrow } X_0(x)=1$
  • $\lambda>0 \Rightarrow \rho^2= \lambda i^2 \Rightarrow \rho= \pm i \sqrt{\lambda}$

    $\Rightarrow X(x)=c_1 \cos(\sqrt{\lambda}x)+ c_2 \sin (\sqrt{\lambda} x), x \in \mathbb{R}$

    $T'(t)+ \lambda T(t)=0$

    $\Rightarrow T(t)=c e^{- \lambda t}$

    $$u_{\lambda}(x,t)=e^{- \lambda t} \cos(\sqrt{\lambda} x) \\ e^{- \lambda t} \sin(\sqrt{\lambda}x)$$

    General solution:

    $$u_1(x,t)= \int_0^{\infty} c_1(\lambda) e^{- \lambda t} \cos(\sqrt{\lambda}x)d \lambda$$

    $$u_2(x,t)= \int_0^{\infty} c_2(\lambda) e^{- \lambda t} \sin(\sqrt{\lambda}x)d \lambda$$

    $$u(x,t)= \int_0^{\infty} c(\lambda) e^{- \lambda t} e^{i \sqrt{\lambda} x} d \lambda$$

    $$( c_1, c_2: [0,+\infty) \to \mathbb{R}, c:[0,+\infty) \to \mathbb{C}$$

    Initial conditions:$$u(x,0)=f(x) \Leftrightarrow f(x)= \int_0^{\infty} c(\lambda) e^{i \sqrt{\lambda}x} d \lambda$$
    Could you explain me why in this case the general solution is of the form $u(x,t)= \int_0^{\infty} c(\lambda) e^{- \lambda t} e^{i \sqrt{\lambda} x} d \lambda$?

    Why isn't it $u(x,t)= \frac{a_0}{2}+\sum_{k=1}^{\infty} (a_k \cos (kx)+ b_k \cos (kx))$ ?
 
Physics news on Phys.org
Hey! (Smile)

evinda said:
Why isn't it $u(x,t)= \frac{a_0}{2}+\sum_{k=1}^{\infty} (a_k \cos (kx)+ b_k \cos (kx))$ ?

I think you're only taking $X(x)$ into account, while the solution is $X(x)T(t)$. (Wasntme)Let's look at it like this. (Thinking)

We found that for any $\lambda > 0$:
$$u(x,t)=X(x)T(t) = (c_1 \cos(\sqrt{\lambda}x)+ c_2 \sin (\sqrt{\lambda} x)) c e^{- \lambda t}
=C e^{-\lambda t} \cos(\sqrt{\lambda}x) + D e^{- \lambda t} \sin (\sqrt{\lambda} x)$$
is a solution.

Any linear combination with different $\lambda$'s will also be a solution.
So a more general solution is:
$$u(x,t) = \sum_i \Big[C_i e^{-\lambda_i t} \cos(\sqrt{\lambda_i}x) + D_i e^{- \lambda_i t} \sin (\sqrt{\lambda_i} x)\Big]$$
where $\lambda_i$ is any positive number, and $C_i,D_i$ are any arbitrary constants.

Letting $i$ go to infinity, we can write this as:
$$u(x,t) = \int_0^\infty \Big[C(\lambda) e^{-\lambda t} \cos(\sqrt{\lambda}x) + D(\lambda) e^{- \lambda t} \sin (\sqrt{\lambda} x)\Big]d\lambda$$
(Mmm)

Next step is to apply Euler's formula. (Thinking)
 

Similar threads

  • · Replies 28 ·
Replies
28
Views
4K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 25 ·
Replies
25
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
12
Views
3K
  • · Replies 33 ·
2
Replies
33
Views
6K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K