MHB Why is the Maclaurin series of $e^u$ simply $\sum\frac{u^n}{n!}$?

Click For Summary
The discussion centers on the Maclaurin series of the function $e^u$, where $u$ is a function of $x$. It is clarified that while the series for $e^x$ is $\sum \frac{x^n}{n!}$, substituting $u(x)$ does not yield a valid Maclaurin series unless $u$ is a simple power of $x$. Participants emphasize that expressions like $\sum \frac{[\ln(x)]^n}{n!}$ do not constitute a Maclaurin series, as they are not power series. The conversation also touches on the equivalence of certain series and their outputs, concluding that the Maclaurin series for $e^{\ln x}$ simplifies to just "x". Ultimately, the distinction between valid power series and mere substitutions is highlighted.
poissonspot
Messages
39
Reaction score
0
It just occurred to me now that I never asked why the Maclaurin series of $e^u$, u being some function of x, is simply $\sum\frac{u^n}{n!}$. I should say I understand why the Maclaurin series of $e^x$ is $\sum\frac{x^n}{n!}$, due to the derivative of the exponential function being itself, but why this series expansion should apply to functions of x is less clear. I've played with this expansion a little and see what might be an inductive argument, but once again its not clear. Any suggestions?
 
Physics news on Phys.org
conscipost said:
It just occurred to me now that I never asked why the Maclaurin series of $e^u$, u being some function of x, is simply $\sum\frac{u^n}{n!}$. I should say I understand why the Maclaurin series of $e^x$ is $\sum\frac{x^n}{n!}$, due to the derivative of the exponential function being itself, but why this series expansion should apply to functions of x is less clear. I've played with this expansion a little and see what might be an inductive argument, but once again its not clear. Any suggestions?
Well, it isn't! Unless u is just a power of x, $\sum\frac{u^n}{n!}$ is not even a power series.

What is the Maclaurin series for $e^{ln x}$? It isn't $\sum\frac{[ln(x)]^n}{n!}$. That isn't the Maclaurin series of anything- as I said, it is not even a power series.

Because $e^x= \sum \frac{x^n}{n!}$ simple substitution gives $e^{u(x)}= \sum \frac{u^n}{n!}$ but, once again, that is not a "Maclaurin series" nor even a power series.
 
Last edited by a moderator:
HallsofIvy said:
Well, it isn't! Unless u is just a power of x, $\sum\frac{u^n}{n!}$ is not even a power series.

What is the Maclaurin series for $e^{ln x}$? It isn't $\sum\frac{[ln(x)]^n}{n!}$. That isn't the Maclaurin series of anything- as I said, it is not even a power series.

Because $e^x= \sum \frac{x^n}{n!}$ simple substitution gives $e^{u(x)}= \sum \frac{u^n}{n!}$ but, once again, that is not a "Maclaurin series" nor even a power series.

Is it fair to say the two are equivalent, that is $\sum\frac{[ln(x)]^n}{n!}$ and the Maclaurin series for $e^{ln x}$? If they yield the same values for all x, are they different for all said purposes? I do agree that that is not in the form of a Maclaurin series. I guess this is all an unneeded relationship when it comes down to it. I thought that the series derived for e^x had some restriction due to the fact I had derived it using the fact that the derivative of e^x is e^x. But there is nothing but a substitution at hand. It almost seemed like a leap to just substitute, but why not?
 
Last edited:
conscipost said:
Is it fair to say the two are equivalent, that is $\sum\frac{[ln(x)]^n}{n!}$ and the Maclaurin series for $e^{ln x}$? If they yield the same values for all x, are they different for all said purposes? I do agree that that is not in the form of a Maclaurin series. I guess this is all an unneeded relationship when it comes down to it. I thought that the series derived for e^x had some restriction due to the fact I had derived it using the fact that the derivative of e^x is e^x. But there is nothing but a substitution at hand. It almost seemed like a leap to just substitute, but why not?
I will agree with your use of the word "equivalent". By the way, the Maclaurin series for $e^{ln x}$ is just "x".
 
HallsofIvy said:
I will agree with your use of the word "equivalent". By the way, the Maclaurin series for $e^{ln x}$ is just "x".
That's understood.
 
There are probably loads of proofs of this online, but I do not want to cheat. Here is my attempt: Convexity says that $$f(\lambda a + (1-\lambda)b) \leq \lambda f(a) + (1-\lambda) f(b)$$ $$f(b + \lambda(a-b)) \leq f(b) + \lambda (f(a) - f(b))$$ We know from the intermediate value theorem that there exists a ##c \in (b,a)## such that $$\frac{f(a) - f(b)}{a-b} = f'(c).$$ Hence $$f(b + \lambda(a-b)) \leq f(b) + \lambda (a - b) f'(c))$$ $$\frac{f(b + \lambda(a-b)) - f(b)}{\lambda(a-b)}...

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
6K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 21 ·
Replies
21
Views
9K