KingBigness
- 94
- 0
Why is this always the case...
A=\begin{array}{cc}<br /> 1 & 6 \\<br /> 4 & 3 \\<br /> \end{array}
λ_{1}=7
λ_{2}=-3
A=\begin{array}{cc}<br /> 1-7 & 6 \\<br /> 4 & 3-7 \\<br /> \end{array}
A=\begin{array}{cc}<br /> -6 & 6 \\<br /> 4 & -4 \\<br /> \end{array}
Why is A_{11} and A_{12}
always a multiple of
A_{21} and A_{22}?
Is this a feature of Eigenvalues or is this done on purpose to make solving the eigenvectors easier?
A=\begin{array}{cc}<br /> 1 & 6 \\<br /> 4 & 3 \\<br /> \end{array}
λ_{1}=7
λ_{2}=-3
A=\begin{array}{cc}<br /> 1-7 & 6 \\<br /> 4 & 3-7 \\<br /> \end{array}
A=\begin{array}{cc}<br /> -6 & 6 \\<br /> 4 & -4 \\<br /> \end{array}
Why is A_{11} and A_{12}
always a multiple of
A_{21} and A_{22}?
Is this a feature of Eigenvalues or is this done on purpose to make solving the eigenvectors easier?