- #1
- 96
- 0
Why is this always the case...
A=[itex]\begin{array}{cc}
1 & 6 \\
4 & 3 \\
\end{array}[/itex]
[itex]λ_{1}[/itex]=7
[itex]λ_{2}[/itex]=-3
A=[itex]\begin{array}{cc}
1-7 & 6 \\
4 & 3-7 \\
\end{array}[/itex]
A=[itex]\begin{array}{cc}
-6 & 6 \\
4 & -4 \\
\end{array}[/itex]
Why is [itex]A_{11}[/itex] and [itex]A_{12}[/itex]
always a multiple of
[itex]A_{21}[/itex] and [itex]A_{22}[/itex]?
Is this a feature of Eigenvalues or is this done on purpose to make solving the eigenvectors easier?
A=[itex]\begin{array}{cc}
1 & 6 \\
4 & 3 \\
\end{array}[/itex]
[itex]λ_{1}[/itex]=7
[itex]λ_{2}[/itex]=-3
A=[itex]\begin{array}{cc}
1-7 & 6 \\
4 & 3-7 \\
\end{array}[/itex]
A=[itex]\begin{array}{cc}
-6 & 6 \\
4 & -4 \\
\end{array}[/itex]
Why is [itex]A_{11}[/itex] and [itex]A_{12}[/itex]
always a multiple of
[itex]A_{21}[/itex] and [itex]A_{22}[/itex]?
Is this a feature of Eigenvalues or is this done on purpose to make solving the eigenvectors easier?