Why is time scalar, not vector?

Click For Summary
Time is considered a scalar rather than a vector because it is independent of spatial coordinates and does not possess direction, which is a defining characteristic of vectors. While vectors have magnitude and direction and can change under coordinate transformations, time remains constant across different reference frames in classical mechanics. This independence from coordinate systems is crucial, as it aligns with the purpose of vectors to eliminate such dependencies. In special relativity, time can be treated as a component of a four-dimensional space-time vector, where its magnitude is conserved under transformations. Thus, the distinction between scalar and vector quantities is essential in understanding the nature of time in physics.
lowerlowerhk
Messages
27
Reaction score
0
Let's see if I think correctly first: I think a vector is a group of numbers independent of each other. What we say 3D vector means "it takes three numbers to specify a position and these numbers are not (explicitly) dependent on each other. The so called 'direction' of a vector is a visualisation that reflects this property."

If the above is correct, and since time is also independent of spatial coordinates, then why can't time be a vector?
eg: in the definition of velocity as dx/dt, x is a vector while time is a scalar. Why so?
 
Mathematics news on Phys.org
You can think of a real number as an element of a one dimensional vector space. To formally make all the definitions and distinctions needed to define the one dimensional vector space is regarded as unnecessary bother unless the one dimensional space forms a subspace of a higher dimensional space.
 
Vector and scalar are physical quantities. And Vector has Magnitude and direction, satisfying the law of vector of addition. And Time doesn't have direction, this its scalar quality. And when a vector is multiplied, divided... with scalar, the quantity obtained is vector. So, when X, displacement is vector, when differentiating with time we obtain velocity,v which is also a vector quantity. Hope it helps...
 
I got an answer, not sure if it is the complete answer:

The reason to not define time as another vector is that, in classical mechanics, the value of time is independent of reference frame. In math terms, it means that the value of time does not change under a coordinate transform and thus the length of the resultant vector magnitude might change. This defeats the very purpose of creating the concept of vector - to get rid of coordinate dependency.

In special relativity, where time does change under coordinate transform, time could be formulated as a component of a 4D space-time vector. This vector's magnitude is defined to be conserved under coordinate transform.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 44 ·
2
Replies
44
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 15 ·
Replies
15
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K