Suvat vector versus the scalar form

Click For Summary

Homework Help Overview

The discussion revolves around the SUVAT equations, which describe motion in one dimension, and the distinction between scalar and vector forms of these equations. Participants explore the implications of using negative signs in scalar quantities and the nature of vector components in the context of these equations.

Discussion Character

  • Conceptual clarification, Assumption checking, Mixed

Approaches and Questions Raised

  • Participants question the validity of using negative signs in scalar forms of the SUVAT equations and discuss the differences between scalar quantities and vector components. There is also exploration of how modulus applies to vector equations.

Discussion Status

The discussion is ongoing with various interpretations being explored. Some participants offer clarifications about the nature of scalars and vectors, while others express confusion regarding the application of negative values in the context of motion equations.

Contextual Notes

There is a mention of the lack of a formal homework statement, indicating that this discussion may be more exploratory in nature. Participants also highlight the importance of understanding the mathematical properties of scalars and vectors in relation to the SUVAT equations.

  • #31
vela said:
If you have a vector ##\vec A = A_x \,\hat i + A_y \,\hat j##, I'd call ##A_x\,\hat i## the vector component of ##\vec A## in the x-direction while ##A_x## is the scalar component of ##\vec A## in the x-direction. I think typical usage is that one is talking about the scalar component if one just says "component."
Thank you.
And finally, if I use one of the suvat equations to compute a quantity, say s, and I get an answer of -3. Does this mean I've computed the displacement to be a one dimensional vector of -3 i, or does it mean that my displacement vector has a component of -3 in the i direction? Or does this mean the same thing...
 
Physics news on Phys.org
  • #32
heroslayer99 said:
Thank you.
And finally, if I use one of the suvat equations to compute a quantity, say s, and I get an answer of -3. Does this mean I've computed the displacement to be a one dimensional vector of -3 i, or does it mean that my displacement vector has a component of -3 in the i direction? Or does this mean the same thing...
Those are the same thing.
 
  • #33
PeroK said:
Those are the same thing.
Ok and just because I am pedantic, suvat in 1D is with the components of the vectors in that direction (which is a scalar and hence +ve or -ve)
 
  • #34
heroslayer99 said:
Ok and just because I am pedantic, suvat in 1D is with the components of the vectors in that direction (which is a scalar and hence +ve or -ve)
I don't know what you mean. Having a unit vector in one dimension is redundant. Vectors only really get interesting in two or more dimensions.
 
  • #35
vela said:
If you have a vector ##\vec A = A_x \,\hat i + A_y \,\hat j##, I'd call ##A_x\,\hat i## the vector component of ##\vec A## in the x-direction while ##A_x## is the scalar component of ##\vec A## in the x-direction. I think typical usage is that one is talking about the scalar component if one just says "component."
Suppose one has ##\vec A = 3 \,\hat i - 4 \,\hat j##. I am using specific numbers instead of ##A_x## and ##A_y## to remove the sign ambiguity that is inherent in algebraic symbols.

I see two interpretations for the term ##- 4 \,\hat j## representing the vector component of ##\vec A## in the y-direction.
  1. A vector of negative y-component pointing in +y-direction, i.e. ##- 4 \,\hat j=(-4)(+\hat y).##
  2. A vector of positive magnitude 4 pointing in the negative y direction, i.e. ##- 4 \,\hat j=(+4)(-\hat y).##
We teach students to say that vector ##\vec A = 3 \,\hat i - 4 \,\hat j## has a negative y-component, which conforms with interpretation 1, yet in everyday life we conform with interpretation 2. When someone asks us, "which way did he go?", we extend our arm to form a unit vector with its tail at our shoulder and its tip at the end of our index finger and say, "he went that-a-way" whichever way that is. If he went South, we say and point "South" (interpretation 1), we don't say "North moving backwards" (interpretation 2.) Small wonder there is confusion.

Just a few thoughts ##\dots##
 
  • #36
kuruman said:
Suppose one has ##\vec A = 3 \,\hat i - 4 \,\hat j##. I am using specific numbers instead of ##A_x## and ##A_y## to remove the sign ambiguity that is inherent in algebraic symbols.

I see two interpretations for the term ##- 4 \,\hat j## representing the vector component of ##\vec A## in the y-direction.
  1. A vector of negative y-component pointing in +y-direction, i.e. ##- 4 \,\hat j=(-4)(+\hat y).##
  2. A vector of positive magnitude 4 pointing in the negative y direction, i.e. ##- 4 \,\hat j=(+4)(-\hat y).##
We teach students to say that vector ##\vec A = 3 \,\hat i - 4 \,\hat j## has a negative y-component, which conforms with interpretation 1, yet in everyday life we conform with interpretation 2. When someone asks us, "which way did he go?", we extend our arm to form a unit vector with its tail at our shoulder and its tip at the end of our index finger and say, "he went that-a-way" whichever way that is. If he went South, we say and point "South" (interpretation 1), we don't say "North moving backwards" (interpretation 2.) Small wonder there is confusion.

Just a few thoughts ##\dots##
I’d argue that going 4 m in one direction would be equivalent to going -4 m in the opposite direction. That would eliminate any dependence on interpretation.
 
  • #37
heroslayer99 said:
Ok and just because I am pedantic, suvat in 1D is with the components of the vectors in that direction (which is a scalar and hence +ve or -ve)
If you have an equation like ##\vec{v}=\vec{v_o}+\vec{a}t## then you can write ##v_x=v_{ox}+a_xt##. What we are saying is that if two vectors are equal then their x-components are also equal. We usually write the latter equation as ##v=v_o+at## for brevity, but it can be a source of confusion for many students.
 
  • #38
Orodruin said:
I’d argue that going 4 m in one direction would be equivalent to going -4 m in the opposite direction. That would eliminate any dependence on interpretation.
You argue correctly, of course. However, the equivalence is not at all reinforced by day to day usage in everyday life or in statements of physics problems. Even though there is equivalence, we say, "the pirate treasure is buried 4 m North of this tree"; we don't say, "the pirate treasure is buried - 4 m South of this tree." Likewise, in a physics problem, when we want to provide magnitude and direction, we say "the velocity of car A is 4 m/s towards car B"; we don't say "the velocity of car A is -4 m/s away from car B." Despite the equivalence, humans have an aversion for negative signs which introduces an asymmetry in usage to avoid the confusion that might arise from a double negative.

My point is that this asymmetry leads one to think of a vector component of a vector, i.e. ##-A_y~\hat y## as a magnitude ##|A_y|## times a direction ##(-\hat y)##. Up to this point that's OK. But then comes the physics teacher who says that ##A_y##, the y-component of vector ##\vec A##, is a scalar. At this point one erroneously concludes "therefore scalars are "always" positive."

When vectors are first introduced, I think that usage of the term "scalar" should be avoided even if accompanied by a relaxed definition, as @PeroK suggests in #29, because it invites trouble. A vector is usually introduced as a mathematical entity that has magnitude and direction. If then we define a scalar as an entity that has magnitude only but no direction, ##~\dots~## oops, I mentioned the M-word which is used for a positive quantity only.

In my opinion, there is no good way to introduce scalars properly at the intro level. If I stop and think about it, I see no harm done by not mentioning scalars at that level either.
 
  • Informative
Likes   Reactions: PeroK
  • #39
At the same time, I still remember precisely going in the opposite direction to a given direction being how I was first introduced to negative numbers. I still have a vague memory of the illustration from the low level maths textbook somehow ingrained on my retina.
 
  • Wow
Likes   Reactions: kuruman
  • #40
carzzpeter Referenc said:
Which one of them? Each component of the suvat equation is a scalar equation.
:welcome:
If you "reply" to the post, we can see what you are referring to here. Otherwise, it's not clear what you're asking about.
 
  • #41
PeroK said:
:welcome:
If you "reply" to the post, we can see what you are referring to here. Otherwise, it's not clear what you're asking about.
I think it is fairly safe to assume that replies of the form in #40 are directed directly at the OP without checking the rest of the thread to see what has already been said. Clarity would of course be best though.
 
  • #42
heroslayer99 said:
I've been told earlier that a vector component is a scalar

vela said:
while Ax is the scalar component of A→ in the x-direction

heroslayer99 said:
displacement vector has a component of -3 in the i direction?

kuruman said:
Ay, the y-component of vector A→, is a scalar
As I understand it, a component of a vector is a vector. In the vector ##x\hat i+y\hat j##, ##x\hat i## is the ##\hat i## component, while the scalar x is the coefficient of ##\hat i##.
 
  • #43
haruspex said:
As I understand it, a component of a vector is a vector. In the vector ##x\hat i+y\hat j##, ##x\hat i## is the ##\hat i## component, while the scalar x is the coefficient of ##\hat i##.
This may be a question of nomenclature. The use of ”component” for ##x## is widespread and i would consider it pretty standard. Just a random example from a quick internet search : https://www.grc.nasa.gov/www/k-12/airplane/vectpart.html
 
  • Like
Likes   Reactions: nasu
  • #44
Orodruin said:
This may be a question of nomenclature. The use of ”component” for ##x## is widespread and i would consider it pretty standard. Just a random example from a quick internet search : https://www.grc.nasa.gov/www/k-12/airplane/vectpart.html
I regard that as unfortunate and confusing.
 
  • Like
Likes   Reactions: jbriggs444
  • #45
haruspex said:
I regard that as unfortunate and confusing.
That may be so and it is your prerogative to consider it as such. However, it does not change the pretty standard usage.
 

Similar threads

  • · Replies 48 ·
2
Replies
48
Views
7K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
35
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
1
Views
836
Replies
6
Views
2K
Replies
3
Views
6K
  • · Replies 4 ·
Replies
4
Views
3K