Drakkith
Mentor
- 23,184
- 7,666
Let's take this to an extreme and assume that ALL radiation below the visible part of the spectrum is unable to penetrate the atmosphere. So that radiation is now absorbed by the atmosphere, heating it up just like normal while the visible light makes it through. When the atmosphere and surface emit radiation back out it just gets reabsorbed again! (One key thing is to remember that gases can transmit heat directly by contact, so they don't need to release radiation to heat up their surroundings) Only near the very top of the atmosphere where the air is very very thin can any infrared radiation make it back out, resulting in about 95% of the outgoing radiation simply being absorbed again.
The result of all this is that the atmosphere and the surface just keep heating up until the temperature is high enough to make its black body spectrum emit enough energy in the visible range (since that is the only part that can make it out) to equal the incoming energy from the Sun. That's about...2,000 k?
The result of all this is that the atmosphere and the surface just keep heating up until the temperature is high enough to make its black body spectrum emit enough energy in the visible range (since that is the only part that can make it out) to equal the incoming energy from the Sun. That's about...2,000 k?