MHB Why is $X \subset \mathcal{P}X$ true for a transitive set $X$?

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Relation
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

Proposition

Let $X$ be a set. The following are equivalent:
  1. $X$ is transitive
  2. Each element of $X$ is a subset of $X$ $\left( \forall x(x \in X \rightarrow x \subset X) \right)$
  3. $X \subset \mathcal{P}X$
  4. $\bigcup X \subset X$

Could you explain me why this: $X \subset \mathcal{P}X$ holds?

When we have for example $X=\{ a, b, c \}$, then $x \in a \rightarrow x \in X$.
So, we see that $a \subset X \rightarrow a \in \mathcal{P}X$.
But why does it also hold that $X \subset \mathcal{P}X$ ? (Thinking)
 
Last edited:
Physics news on Phys.org
evinda said:
Sentence
Proposition, or claim.

evinda said:
Let $X$ be a set. The following are equivalent:
  1. $X$ is transitive
  2. Each element of $X$ is a subset of $X$ $\left( \forall x(x \in X \rightarrow x \subset X) \right)$
  3. $X \subset \mathcal{P}X$
  4. $\bigcup X \subset X$

Could you explain me why this: $X \subset \mathcal{P}X$ holds?
It doesn't in general. It only holds if any of the other conditions hold.

evinda said:
When we have for example $X=\{ a, b, c \}$, then $x \in a \rightarrow x \in X$.
Why do you say so? What are $a$, $b$ and $c$?
 
Evgeny.Makarov said:
Proposition, or claim.

A ok.. (Nod)

Evgeny.Makarov said:
It doesn't in general. It only holds if any of the other conditions hold.

Could you explain me why it holds if for example the first condition holds? (Thinking)

Evgeny.Makarov said:
Why do you say so? What are $a$, $b$ and $c$?

I thought so because $X$ is transitive. Am I wrong? (Thinking)
 
evinda said:
Let $X$ be a set. The following are equivalent:
  1. $X$ is transitive
  2. Each element of $X$ is a subset of $X$ $\left( \forall x(x \in X \rightarrow x \subset X) \right)$
  3. $X \subset \mathcal{P}X$
  4. $\bigcup X \subset X$

evinda said:
Could you explain me why it [$X \subset \mathcal{P}X$] holds if for example the first condition holds?
It's pretty straightforward to show that 1 implies 2 and 2 implies 3.

evinda said:
When we have for example $X=\{ a, b, c \}$, then $x \in a \rightarrow x \in X$.
So, we see that $a \subset X \rightarrow a \in \mathcal{P}X$.
evinda said:
I thought so because $X$ is transitive. Am I wrong?
This sounds like the following dialog.

"John is a murderer and must go to jail."

"Which John? Every John? And why is he a murderer?"

"I mean, if John is a murderer, he must go to jail."

"Ah..."

You introduced $X$ by saying that $X=\{ a, b, c \}$ for unknown $a$, $b$ and $c$. Who told you that $X$ is transitive? Do you say, "If $X$ is transitive", i.e., are you assuming that $X$ is transitive? Then you should say so. For each statement that you write, you should indicate its status: whether it's an assumption, a theorem that you are starting to prove or it follows from some previous statement.

Also, in this:
evinda said:
So, we see that $a \subset X \rightarrow a \in \mathcal{P}X$.
it is not clear whether we see that $a \subset X$ implies $a \in \mathcal{P}X$ or that $a \subset X$ holds, and therefore $a \in \mathcal{P}X$ holds. To see the difference, $n>5$ implies $n>3$ for all $n$, but it is not true that for any $n$ it is the case that $n>5$ and therefore $n>3$.
 
Evgeny.Makarov said:
It's pretty straightforward to show that 1 implies 2 and 2 implies 3.This sounds like the following dialog.

"John is a murderer and must go to jail."

"Which John? Every John? And why is he a murderer?"

"I mean, if John is a murderer, he must go to jail."

"Ah..."

You introduced $X$ by saying that $X=\{ a, b, c \}$ for unknown $a$, $b$ and $c$. Who told you that $X$ is transitive? Do you say, "If $X$ is transitive", i.e., are you assuming that $X$ is transitive? Then you should say so. For each statement that you write, you should indicate its status: whether it's an assumption, a theorem that you are starting to prove or it follows from some previous statement.

Also, in this:

it is not clear whether we see that $a \subset X$ implies $a \in \mathcal{P}X$ or that $a \subset X$ holds, and therefore $a \in \mathcal{P}X$ holds. To see the difference, $n>5$ implies $n>3$ for all $n$, but it is not true that for any $n$ it is the case that $n>5$ and therefore $n>3$.

I am sorry... (Worried)(Tmi)

So can we show that the propositions are equivalent like that? $1 \to 2$: Let $x \in X$. Since $X$ is transitive we have that if $y \in x \rightarrow y \in X$. Therefore $x \subset X$.

$2 \to 3$: Let $x \in X$. Since we assume that $2$ holds we have that $x \subset X \rightarrow x \in \mathcal{P}X$.
Therefore $X \subset \mathcal{P}X$.

$3 \to 4$: Let $x \in \bigcup X$. Then $\exists y \in X$ such that $x \in y$. From $3$ we have that $y \in \mathcal{P}X \rightarrow y \subset X$.
Since $x \in y$ we have that $x \in X$.
Therefore $\bigcup X \subset X$.

$4 \to 1$: Let $x \in \bigcup X $. Since $\bigcup X \subset X$ we have that $x \in X$.
But $x \in \bigcup X$ means that $\exists y \in X$ such that $x \in y$.
How could we continue? (Thinking)
 
evinda said:
$1 \to 2$: Let $x \in X$. Since $X$ is transitive we have that if $y \in x \rightarrow y \in X$. Therefore $x \subset X$.

$2 \to 3$: Let $x \in X$. Since we assume that $2$ holds we have that $x \subset X \rightarrow x \in \mathcal{P}X$.
Therefore $X \subset \mathcal{P}X$.

$3 \to 4$: Let $x \in \bigcup X$. Then $\exists y \in X$ such that $x \in y$. From $3$ we have that $y \in \mathcal{P}X \rightarrow y \subset X$.
Since $x \in y$ we have that $x \in X$.
Therefore $\bigcup X \subset X$.
Not bad. Sorry, I'll be using this post as evidence that I don't have to explain trivial things to you. :p

evinda said:
$4 \to 1$: Let $x \in \bigcup X $. Since $\bigcup X \subset X$ we have that $x \in X$.
But $x \in \bigcup X$ means that $\exists y \in X$ such that $x \in y$.
How could we continue?
You need to start with what you need to prove. $X$ is transitive if $x\in X$ and $y\in x$ imply that $y\in X$. So assume that $x\in X$ and $y\in x$. Then $y\in\bigcup X$ by the definition of generalized union, and since by assumption $\bigcup X\subseteq X$, we have $y\in X$.
 
Evgeny.Makarov said:
Not bad. Sorry, I'll be using this post as evidence that I don't have to explain trivial things to you. :p

(Giggle)

Evgeny.Makarov said:
You need to start with what you need to prove. $X$ is transitive if $x\in X$ and $y\in x$ imply that $y\in X$. So assume that $x\in X$ and $y\in x$. Then $y\in\bigcup X$ by the definition of generalized union, and since by assumption $\bigcup X\subseteq X$, we have $y\in X$.

I understand... Thanks a lot! (Happy)
 

Similar threads

Replies
10
Views
3K
Replies
6
Views
2K
Replies
2
Views
1K
Replies
10
Views
2K
Replies
11
Views
1K
Replies
1
Views
1K
Back
Top