MHB Why is zero not included in the interval (0, infinity)?

  • Thread starter Thread starter Casio1
  • Start date Start date
  • Tags Tags
    Functions
AI Thread Summary
The discussion centers on the exclusion of zero from the interval notation (0, infinity) and the inclusion of zero in [0, infinity) for the function g(x) = sqrt(x). Participants clarify that parentheses indicate an open interval where the endpoint is not included, while square brackets denote a closed interval where the endpoint is included. The confusion arises from the interpretation of intervals and the fact that the domain of h(x) = 1/x is R excluding 0, represented as two open intervals: (-infinity, 0) and (0, infinity). Ultimately, the distinction between open and closed intervals is crucial for understanding why zero is not part of (0, infinity).
Casio1
Messages
86
Reaction score
0
g(x) = sqrt x

Because x in the rule is square root on the right hand side I can understand why only a positive number would be allowed in the left hand side value of x.

I undertand that because x cannot be less than 0, but the square root of x can be any positive number, then the interval notation I understand would be [0, infinity)

zero because x cannot be less than 0, and infinity because x can be any other number.

OK, this is where I have a problem understanding.

h(x) = 1/x

x cannot be zero, the function h has domain R excluding 0, I am to understand this consists of two open intervals.

I understand that x can be any negative number, but am failing to understand why 0 is then included, the interval is written as ( - infinity, 0)

I am told that R excludes 0, so then how can the open interval include (0, infinity).

I understand the infinity part, but x cannot be zero so where does that arrive in the interval?

Please advise if you can.
 
Mathematics news on Phys.org
Casio said:
g(x) = sqrt x
Because x in the rule is square root on the right hand side I can understand why only a positive number would be allowed in the left hand side value of x.
I undertand that because x cannot be less than 0, but the square root of x can be any positive number, then the interval notation I understand would be [0, infinity)
zero because x cannot be less than 0, and infinity because x can be any other number.
OK, this is where I have a problem understanding.
h(x) = 1/x
x cannot be zero, the function h has domain R excluding 0, I am to understand this consists of two open intervals.
I understand that x can be any negative number, but am failing to understand why 0 is then included, the interval is written as ( - infinity, 0)
I am told that R excludes 0, so then how can the open interval include (0, infinity).
I understand the infinity part, but x cannot be zero so where does that arrive in the interval?
Please advise if you can.
$(-\infty)\cup(0,\infty)$
 
Casio said:
g(x) = sqrt x

Because x in the rule is square root on the right hand side I can understand why only a positive number would be allowed in the left hand side value of x.

I undertand that because x cannot be less than 0, but the square root of x can be any positive number, then the interval notation I understand would be [0, infinity)

zero because x cannot be less than 0, and infinity because x can be any other number.

OK, this is where I have a problem understanding.

h(x) = 1/x

x cannot be zero, the function h has domain R excluding 0, I am to understand this consists of two open intervals.

I understand that x can be any negative number, but am failing to understand why 0 is then included, the interval is written as ( - infinity, 0)

I am told that R excludes 0, so then how can the open interval include (0, infinity).

I understand the infinity part, but x cannot be zero so where does that arrive in the interval?

Please advise if you can.
I think that you are maybe failing to notice the difference between [0, infinity) and (0, infinity). A square bracket means that the endpoint is included in the interval (as in a closed interval), but a parenthesis means that the endpoint is excluded (as in an open interval). To be precise, (0, infinity) means the set of all numbers x such that 0<x<infinity. The strict inequality means that 0 is not included in the interval.
 
Opalg said:
I think that you are maybe failing to notice the difference between [0, infinity) and (0, infinity). A square bracket means that the endpoint is included in the interval (as in a closed interval), but a parenthesis means that the endpoint is excluded (as in an open interval). To be precise, (0, infinity) means the set of all numbers x such that 0<x<infinity. The strict inequality means that 0 is not included in the interval.

I am sorry I have probably not explained the misunderstanding too well:o

h(x) = 1/x

if h(0) = 1/0, then this would not be allowed, thus anything divided by zero = 0

I am told that the function h has domain R excluding 0, which consists of two open intervals (- infinity, 0) and (0, infinity)

I understand the parenthesis, they are open intervals, and I understand the - infinity as the x value can be any negative number up to 0.

The confusion is that I am told it excludes 0 yet 0 is included in the parenthesis indicating to me that the interval finishes at 0, then starts at 0 again to infinity, yet the question says R excludes 0.

That is what I am confused about?
 
Casio said:
The confusion is that I am told it excludes 0 yet 0 is included in the parenthesis indicating to me that the interval finishes at 0, then starts at 0 again to infinity, yet the question says R excludes 0.
What exactly do you mean by "0 is included in the parenthesis" and "the interval finishes at 0"?
 
Casio said:
I am sorry I have probably not explained the misunderstanding too well:o

I suggest you read Opalg's reply again, very carefully. I believe he addresses the source of your confusion. The parentheses indicate that we are to include all numbers up to, but not including 0. So no matter how close you get to zero, the number is included in the domain, until you get to zero itself. \((0, \infty)\) would, for example, include numbers like 0.0000001, or \(10^{-50}\), or really any real number strictly greater than zero.

You may then wonder, perhaps, why in our notation we write the interval as starting from 0 instead of starting from the "next" number after zero. The answer is that there is no such number. No matter what positive number you come up with, it is always possible to find a smaller one. So we use zero as the boundary, with the understanding that zero itself is not to be included.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top