Why is zero not included in the interval (0, infinity)?

  • Context: MHB 
  • Thread starter Thread starter Casio1
  • Start date Start date
  • Tags Tags
    Functions
Click For Summary

Discussion Overview

The discussion revolves around the inclusion of zero in interval notation, specifically in the context of functions such as g(x) = sqrt(x) and h(x) = 1/x. Participants explore the implications of using open and closed intervals, particularly in relation to the domain of these functions and the mathematical reasoning behind excluding zero.

Discussion Character

  • Conceptual clarification
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • Some participants explain that for g(x) = sqrt(x), the domain includes all positive numbers, leading to the interval notation [0, infinity).
  • Others argue that for h(x) = 1/x, zero cannot be included in the domain, resulting in the notation R excluding 0, which consists of two open intervals: (-infinity, 0) and (0, infinity).
  • There is confusion expressed regarding the notation, with some participants questioning how zero can be excluded while still being referenced in interval notation.
  • One participant clarifies that (0, infinity) means all numbers greater than zero, emphasizing that the parentheses indicate that zero is not included in the interval.
  • Another participant points out that there is no smallest positive number, which justifies using zero as a boundary in interval notation.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the interpretation of interval notation and the role of zero within it. Confusion persists regarding the distinction between open and closed intervals and how this relates to the functions discussed.

Contextual Notes

Limitations include the potential misunderstanding of interval notation and the implications of including or excluding zero in the context of different functions. The discussion reflects varying levels of familiarity with mathematical concepts related to domains and intervals.

Casio1
Messages
86
Reaction score
0
g(x) = sqrt x

Because x in the rule is square root on the right hand side I can understand why only a positive number would be allowed in the left hand side value of x.

I undertand that because x cannot be less than 0, but the square root of x can be any positive number, then the interval notation I understand would be [0, infinity)

zero because x cannot be less than 0, and infinity because x can be any other number.

OK, this is where I have a problem understanding.

h(x) = 1/x

x cannot be zero, the function h has domain R excluding 0, I am to understand this consists of two open intervals.

I understand that x can be any negative number, but am failing to understand why 0 is then included, the interval is written as ( - infinity, 0)

I am told that R excludes 0, so then how can the open interval include (0, infinity).

I understand the infinity part, but x cannot be zero so where does that arrive in the interval?

Please advise if you can.
 
Physics news on Phys.org
Casio said:
g(x) = sqrt x
Because x in the rule is square root on the right hand side I can understand why only a positive number would be allowed in the left hand side value of x.
I undertand that because x cannot be less than 0, but the square root of x can be any positive number, then the interval notation I understand would be [0, infinity)
zero because x cannot be less than 0, and infinity because x can be any other number.
OK, this is where I have a problem understanding.
h(x) = 1/x
x cannot be zero, the function h has domain R excluding 0, I am to understand this consists of two open intervals.
I understand that x can be any negative number, but am failing to understand why 0 is then included, the interval is written as ( - infinity, 0)
I am told that R excludes 0, so then how can the open interval include (0, infinity).
I understand the infinity part, but x cannot be zero so where does that arrive in the interval?
Please advise if you can.
$(-\infty)\cup(0,\infty)$
 
Casio said:
g(x) = sqrt x

Because x in the rule is square root on the right hand side I can understand why only a positive number would be allowed in the left hand side value of x.

I undertand that because x cannot be less than 0, but the square root of x can be any positive number, then the interval notation I understand would be [0, infinity)

zero because x cannot be less than 0, and infinity because x can be any other number.

OK, this is where I have a problem understanding.

h(x) = 1/x

x cannot be zero, the function h has domain R excluding 0, I am to understand this consists of two open intervals.

I understand that x can be any negative number, but am failing to understand why 0 is then included, the interval is written as ( - infinity, 0)

I am told that R excludes 0, so then how can the open interval include (0, infinity).

I understand the infinity part, but x cannot be zero so where does that arrive in the interval?

Please advise if you can.
I think that you are maybe failing to notice the difference between [0, infinity) and (0, infinity). A square bracket means that the endpoint is included in the interval (as in a closed interval), but a parenthesis means that the endpoint is excluded (as in an open interval). To be precise, (0, infinity) means the set of all numbers x such that 0<x<infinity. The strict inequality means that 0 is not included in the interval.
 
Opalg said:
I think that you are maybe failing to notice the difference between [0, infinity) and (0, infinity). A square bracket means that the endpoint is included in the interval (as in a closed interval), but a parenthesis means that the endpoint is excluded (as in an open interval). To be precise, (0, infinity) means the set of all numbers x such that 0<x<infinity. The strict inequality means that 0 is not included in the interval.

I am sorry I have probably not explained the misunderstanding too well:o

h(x) = 1/x

if h(0) = 1/0, then this would not be allowed, thus anything divided by zero = 0

I am told that the function h has domain R excluding 0, which consists of two open intervals (- infinity, 0) and (0, infinity)

I understand the parenthesis, they are open intervals, and I understand the - infinity as the x value can be any negative number up to 0.

The confusion is that I am told it excludes 0 yet 0 is included in the parenthesis indicating to me that the interval finishes at 0, then starts at 0 again to infinity, yet the question says R excludes 0.

That is what I am confused about?
 
Casio said:
The confusion is that I am told it excludes 0 yet 0 is included in the parenthesis indicating to me that the interval finishes at 0, then starts at 0 again to infinity, yet the question says R excludes 0.
What exactly do you mean by "0 is included in the parenthesis" and "the interval finishes at 0"?
 
Casio said:
I am sorry I have probably not explained the misunderstanding too well:o

I suggest you read Opalg's reply again, very carefully. I believe he addresses the source of your confusion. The parentheses indicate that we are to include all numbers up to, but not including 0. So no matter how close you get to zero, the number is included in the domain, until you get to zero itself. \((0, \infty)\) would, for example, include numbers like 0.0000001, or \(10^{-50}\), or really any real number strictly greater than zero.

You may then wonder, perhaps, why in our notation we write the interval as starting from 0 instead of starting from the "next" number after zero. The answer is that there is no such number. No matter what positive number you come up with, it is always possible to find a smaller one. So we use zero as the boundary, with the understanding that zero itself is not to be included.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 31 ·
2
Replies
31
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K