MHB Why isn't {0}^{3}+{0}^{3}={0}^{3} a proof for Fermat's Last Theorem?

  • Thread starter Thread starter Angel11
  • Start date Start date
  • Tags Tags
    Theorem
Angel11
Messages
11
Reaction score
0
Hello, It is me again.So i was watching some math videos and i came across Fermat's Last Theorem which was very intersting.But i was confused because i wondered for a second and sayed "well if A,B and C are equal then they could be 0 to prove it" but at the same time i thought "well if it works something like the pythagorean theorem then that would be impossible because if a triangle has 3 sides with the length of 0 then there would be nothing" BUT again i also thought "But Fermat's Last Theorem doesn't say anything about a right triangle or any triangle it is just the formula" So my question is:Why isn't {0}^{3}+{0}^{3}={0}^{3} proof (or on any other power with n>2)
 
Mathematics news on Phys.org
I've moved this thread from Differential Equations to Number Theory as that's a better fit.

From Wikipedia:

In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers $a$, $b$, and $c$ satisfy the equation $a^n+b^n=c^n$ for any integer value of $n$ greater than 2. The cases $n=1$ and $n=2$ have been known to have infinitely many solutions since antiquity.
 
oh i didn't realize the "positive number" how stupid of me. Also thanks for moving the thread to number theory. I put it hear because i didn't know where to put it and also thank you for replying
 
Angel1 said:
oh i didn't realize the "positive number" how stupid of me.

I don't think there's anything "stupid" about investigating theorems. It can be easy to miss details, and so asking about it is smart. :D

Angel1 said:
Also thanks for moving the thread to number theory. I put it hear because i didn't know where to put it and also thank you for replying

In the future, if you are unsure about where to post a thread, just make your best guess (as you did for this thread), and then use the post reporting feature to call the thread to the attention of the staff.

To do so, look for the http://mathhelpboards.com/images/mhb/buttons/report-40b.png icon beneath the post, and click that and you will be presented with a form to enter the reason you're reporting the post. Once you enter the reason then submit the form.

When you report the post, just indicate that you are unsure about whether it's posted in the best forum, and someone on staff will be happy to move the thread if needed. (Yes)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top