MHB Why isn't {0}^{3}+{0}^{3}={0}^{3} a proof for Fermat's Last Theorem?

  • Thread starter Thread starter Angel11
  • Start date Start date
  • Tags Tags
    Theorem
Click For Summary
Fermat's Last Theorem states that no three positive integers can satisfy the equation a^n + b^n = c^n for n greater than 2. The confusion arises from considering the case where a, b, and c are equal to zero, which does not apply since the theorem specifically requires positive integers. The discussion highlights the importance of understanding the conditions of mathematical theorems, as well as the value of asking questions to clarify concepts. Participants acknowledge the oversight regarding the requirement for positive numbers and encourage continued inquiry into mathematical topics. Engaging with such theorems is a valuable learning experience.
Angel11
Messages
11
Reaction score
0
Hello, It is me again.So i was watching some math videos and i came across Fermat's Last Theorem which was very intersting.But i was confused because i wondered for a second and sayed "well if A,B and C are equal then they could be 0 to prove it" but at the same time i thought "well if it works something like the pythagorean theorem then that would be impossible because if a triangle has 3 sides with the length of 0 then there would be nothing" BUT again i also thought "But Fermat's Last Theorem doesn't say anything about a right triangle or any triangle it is just the formula" So my question is:Why isn't {0}^{3}+{0}^{3}={0}^{3} proof (or on any other power with n>2)
 
Mathematics news on Phys.org
I've moved this thread from Differential Equations to Number Theory as that's a better fit.

From Wikipedia:

In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers $a$, $b$, and $c$ satisfy the equation $a^n+b^n=c^n$ for any integer value of $n$ greater than 2. The cases $n=1$ and $n=2$ have been known to have infinitely many solutions since antiquity.
 
oh i didn't realize the "positive number" how stupid of me. Also thanks for moving the thread to number theory. I put it hear because i didn't know where to put it and also thank you for replying
 
Angel1 said:
oh i didn't realize the "positive number" how stupid of me.

I don't think there's anything "stupid" about investigating theorems. It can be easy to miss details, and so asking about it is smart. :D

Angel1 said:
Also thanks for moving the thread to number theory. I put it hear because i didn't know where to put it and also thank you for replying

In the future, if you are unsure about where to post a thread, just make your best guess (as you did for this thread), and then use the post reporting feature to call the thread to the attention of the staff.

To do so, look for the http://mathhelpboards.com/images/mhb/buttons/report-40b.png icon beneath the post, and click that and you will be presented with a form to enter the reason you're reporting the post. Once you enter the reason then submit the form.

When you report the post, just indicate that you are unsure about whether it's posted in the best forum, and someone on staff will be happy to move the thread if needed. (Yes)
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 105 ·
4
Replies
105
Views
7K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
2
Views
3K
Replies
20
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
12
Views
2K