find_the_fun
- 147
- 0
Find the gernal solution of [math]cosx\frac{dy}{dx}+(sinx)y=1[/math]
So [math]\frac{dy}{dx}+\frac{sinx}{cosx}y=\frac{1}{cosx}[/math]
[math]\frac{dy}{dx}+tan(x)y=csc(x)[/math] therefore [math]P(x)=tan(x)[/math]
Let [math]\mu (x) = e^{\int P(x) dx}=e^{\int tan(x) dx} =\frac{1}{cosx}[/math]
multiply both sides of the equation by integrating factor
[math]\frac{dy}{dx} \frac{1}{cosx}+y\frac{tanx}{cosx}=\frac{1}{cos^2x}[/math]
[math]\frac{d}{dx}[\mu(x)y]=\frac{d}{dx}[\frac{1}{cosx}y][/math] use product rule [math](\frac{1}{cosx})'y+\frac{1}{cosx}y'=\frac{tanx}{cosx}y+\frac{1}{cosx}\frac{dy}{dx}[/math]
Question 1: how come when we use the product rule and take the derivative of y with respect x we get [math]\frac{dy}{dx}[/math] and not 0? I say 0 because the derivative of a constant is 0 and aren't we treating y as a constant?
Next step: integrate
[math]\int \frac{d}{dx}[\frac{1}{cosx}y]dx = \int \frac{1}{cosx} x[/math]
[math]\frac{y}{cosx}=\ln{|-cosx|}+C[/math]
and [math]y=\ln{|-cosx|}cosx+Ccosx[/math]
Question 2: the back of book has [math]y=sinx+Ccosx[/math] Where did sin(x) come from?
So [math]\frac{dy}{dx}+\frac{sinx}{cosx}y=\frac{1}{cosx}[/math]
[math]\frac{dy}{dx}+tan(x)y=csc(x)[/math] therefore [math]P(x)=tan(x)[/math]
Let [math]\mu (x) = e^{\int P(x) dx}=e^{\int tan(x) dx} =\frac{1}{cosx}[/math]
multiply both sides of the equation by integrating factor
[math]\frac{dy}{dx} \frac{1}{cosx}+y\frac{tanx}{cosx}=\frac{1}{cos^2x}[/math]
[math]\frac{d}{dx}[\mu(x)y]=\frac{d}{dx}[\frac{1}{cosx}y][/math] use product rule [math](\frac{1}{cosx})'y+\frac{1}{cosx}y'=\frac{tanx}{cosx}y+\frac{1}{cosx}\frac{dy}{dx}[/math]
Question 1: how come when we use the product rule and take the derivative of y with respect x we get [math]\frac{dy}{dx}[/math] and not 0? I say 0 because the derivative of a constant is 0 and aren't we treating y as a constant?
Next step: integrate
[math]\int \frac{d}{dx}[\frac{1}{cosx}y]dx = \int \frac{1}{cosx} x[/math]
[math]\frac{y}{cosx}=\ln{|-cosx|}+C[/math]
and [math]y=\ln{|-cosx|}cosx+Ccosx[/math]
Question 2: the back of book has [math]y=sinx+Ccosx[/math] Where did sin(x) come from?