Why must the second term on the right-hand side vanish in string theory?

StenEdeback
Messages
65
Reaction score
38
Homework Statement
There is one statement in the text of the attached picture that I do not understand
Relevant Equations
See text below
I am doing private studies in string theory and am reading "A first course in string theory" by Barton Zwiebach. Below equation 6.52 the author
says "Since the second term on the right-hand side must vanish...". I do not understand why this term must vanish, and I would be grateful for an explanation.

Sten Edebäck

IMG_0026.PNG
 
Physics news on Phys.org
The first term on the RHS should vanish because of the choice that boundary values of integration vanish, and the second term on the RHS is zero follows from this and ##\delta S=0##.
 
  • Like
Likes StenEdeback
Thank you! A good explanation! Physics Forums is indeed a valuable last resort for me doing private studies, when I cannot find the answers to my questions by googling. Physics Forums is the equivalent of a supporting professor to me. And I feel a true joy when I overcome a hurdle and can go on with my studies. Theoretical Physics is really fun!
 
  • Like
Likes Hamiltonian, Amrator, pinball1970 and 4 others
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top