Why Should the Total Number of States Equal the Volume of an Octant?

Click For Summary

Discussion Overview

The discussion revolves around the relationship between the total number of microstates and the volume of an octant in the context of statistical mechanics. Participants explore the mathematical formulation and geometric interpretation of microstates for a system of particles confined to a volume, particularly focusing on the asymptotic behavior of these states as the energy increases.

Discussion Character

  • Technical explanation
  • Conceptual clarification
  • Debate/contested

Main Points Raised

  • Some participants reference a statement from a textbook regarding the asymptotic equivalence of the number of microstates and the volume of an octant of a sphere.
  • One participant calculates the volume of a sphere and notes that an octant would be one-eighth of that volume.
  • Another participant emphasizes the need to visualize states as points in three-dimensional space, suggesting that as energy increases, the states become closely packed, allowing for a continuous approximation.
  • Concerns are raised about the conditions under which states become close together, with references to taking the thermodynamic limit and the implications of large volumes.
  • Some participants argue that counting grid points in n-space leads to the conclusion that the number of states corresponds to the volume in that space.

Areas of Agreement / Disagreement

There is no consensus on the reasoning behind why the total number of states should equal the volume of an octant. Participants express differing levels of understanding and agreement regarding the geometric interpretation and the conditions under which the approximation holds.

Contextual Notes

Participants discuss the dependence of the conclusions on the assumptions made about the limits of volume and energy, as well as the transition from discrete to continuous states. The discussion highlights the unresolved nature of these assumptions and their implications for the argument.

Kashmir
Messages
466
Reaction score
74
*Pathria, Statistical mechanics pg 11,4ed*

The text is long but it is straightforward. The question is at last about the equation given at end

In order to find the number of microstates ##\Omega(N,V,E##) author writes

" In other words, we have to determine the total number of (independent) ways of satisfying the equation
##
\sum_{r=1}^{3 N} \varepsilon_{r}=E,
"##
Where ##E## is the total energy of system and
##\varepsilon_{r}## is the energy of ##r##th degree of freedom.

" Now, the energy eigenvalues for a free, nonrelativistic particle confined to a cubical box of side ##L\left(V=L^{3}\right)##, under the condition that the wave function ##\psi(\boldsymbol{r})## vanishes everywhere on the boundary, are given by
##
\varepsilon\left(n_{x}, n_{y}, n_{z}\right)=\frac{h^{2}}{8 m L^{2}}\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right) ; \quad n_{x}, n_{y}, n_{z}=1,2,3, \ldots,
##
where ##h## is Planck's constant and ##m## the mass of the particle. The number of distinct eigenfunctions (or microstates) for a particle of energy ##\varepsilon## would, therefore, be equal to the number of independent, positive-integral solutions of the equation
##
\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right)=\frac{8 m V^{2 / 3} \varepsilon}{h^{2}}=\varepsilon^{*} .
##
We may denote this number by ##\Omega(1, \varepsilon, V)##. Extending the argument, it follows that the desired number ##\Omega(N, E, V)## would be equal to the number of independent, positiveintegral solutions of the equation
##
\sum_{r=1}^{3 N} n_{r}^{2}=\frac{8 m V^{2 / 3} E}{h^{2}}=E^{*}
##"
"... the number ##\Omega(N, V, E)##, or better ##\Omega_{N}\left(E^{*}\right)## is equal to the number of positiveintegral lattice points lying on the surface of a ##3 N##-dimensional sphere of radius ##\sqrt{E}^{*} ## . The number ##\Sigma_{N}\left(E^{*}\right)##, which denotes the number of positive-integral lattice points lying on or within the surface of a ##3 N##-dimensional sphere of radius ##\sqrt{E}^{*}##. In terms of our physical problem, this would correspond to the number, ##\Sigma(N, V, E)##, of microstates of the given system consistent with all macrostates characterized by the specified values of the parameters ##N## and ##V## but having energy less than or equal to ##E####\Sigma(N, V, E)=\sum_{E^{\prime} \leq E} \Omega\left(N, V, E^{\prime}\right)
##
or
##
\Sigma_{N}\left(E^{*}\right)=\sum_{E^{*} \leq E^{*}} \Omega_{N}\left(E^{{*\prime}}\right)##

"...let us examine the behavior of the numbers ##\Omega_{1}\left(\varepsilon^{*}\right)## and ##\Sigma_{1}\left(\varepsilon^{*}\right)## which correspond to the case of a single particle confined to the given volume ##V##. The number ##\Sigma_{1}\left(\varepsilon^{*}\right)## on the other hand, exhibits a much smoother asymptotic behavior. **From the geometry of the problem, we note that, asymptotically, ##\Sigma_{1}\left(\varepsilon^{*}\right)## should be equal to the volume of an octant of a three-dimensional sphere of radius** ##\sqrt{\varepsilon}^{*}##, **that is**,
##
\lim _{\varepsilon^{*} \rightarrow \infty} \frac{\Sigma_{1\left(\varepsilon^{*}\right)}}{(\pi / 6) \varepsilon^{* 3 / 2}}=1.
##

* Why is the above equation true?
 
Science news on Phys.org
Hi,

If I understand your question, you agree with the bold-faced statement and ask about the equation ?

Well, the volume of a sphere is ##{4\over 3} \pi r^3##, so an octant has a volume 1/8 of that.

##\ ##
 
BvU said:
Hi,

If I understand your question, you agree with the bold-faced statement and ask about the equation ?

Well, the volume of a sphere is ##{4\over 3} \pi r^3##, so an octant has a volume 1/8 of that.

##\ ##
hi, no I don't understand the statement.
 
You have to imagine what it looks like in n-space: consider each state as a point ##(n_x, n_y, n_z)## in three-dimensional space, with corresponding energy ##\varepsilon(n_x, n_y, n_z)##.

Asymptotically, these states become so close to one another than one can consider ##n_x##, ##n_y##, and ##n_z## as continuous instead of discrete. In that case, all states with the same energy are characterized by a vector ##\vec{n} = (n_x, n_y, n_z)## of the same length. That vector can point anywhere in the octant where ##n_x##, ##n_y##, and ##n_z## are all positive. The tip of that vector describes (1/8th of) a spherical shell, and the total number of states is the volume of (1/8th of) the corresponding sphere.
nspace2.png

(Picture "borrowed" form http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/phodens.html)
 
  • Like
Likes   Reactions: vanhees71, Kashmir and BvU
DrClaude said:
You have to imagine what it looks like in n-space: consider each state as a point ##(n_x, n_y, n_z)## in three-dimensional space, with corresponding energy ##\varepsilon(n_x, n_y, n_z)##.

Asymptotically, these states become so close to one another than one can consider ##n_x##, ##n_y##, and ##n_z## as continuous instead of discrete. In that case, all states with the same energy are characterized by a vector ##\vec{n} = (n_x, n_y, n_z)## of the same length. That vector can point anywhere in the octant where ##n_x##, ##n_y##, and ##n_z## are all positive. The tip of that vector describes (1/8th of) a spherical shell, and the total number of states is the volume of (1/8th of) the corresponding sphere.
View attachment 299200
(Picture "borrowed" form http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/phodens.html)
This cleared it a lot. Thank you.
I have a doubts regarding what you said:

1) Why do "...Asymptotically these states become so close to one another...? How do we know that they become so close?
 
Kashmir said:
1) Why do "...Asymptotically these states become so close to one another...? How do we know that they become so close?
I was using the same wording as in your book, but this will depend on exactly how you are taking the thermodynamic limit. For instance, taking ##V \rightarrow \infty##, you have ##L \rightarrow \infty## in the equation for energy and the energy levels become continuous. Also, for ##\vec{n}## big enough, the discreteness of ##n_x##, ##n_y##, and ##n_z## becomes negligible.
 
DrClaude said:
The tip of that vector describes (1/8th of) a spherical shell, and the total number of states is the volume of (1/8th of) the corresp
Why should the total number of states be equal to the volume of an octant?

Once we assume that the number of states is continuous it follows that they are infinite in number.
 
Last edited:
Kashmir said:
Why should the total number of states be equal to the volume of an octant?
It is a matter of counting grid points in ##n## space. Each grid point ##(n_x, n_y, n_z)\ ## corresponds to a microstate.

The number of those grid points satisfying the energy constraint corresponds to a volume in that ##n## space.

##\ ##
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K