Insights Why Vector Spaces Explain The World: A Historical Perspective

  • Thread starter Thread starter fresh_42
  • Start date Start date
  • Tags Tags
    Historical Vector
AI Thread Summary
Vector spaces are defined as an abelian group combined with a field that operates on it, often visualized as arrows that can be manipulated through addition and scaling. The discussion emphasizes the abstract nature of vector spaces, allowing for the addition of various mathematical objects beyond simple arrows. Historical context is provided, highlighting significant contributions from figures like Schrödinger and Heisenberg in quantum mechanics. The article aims to connect the concept of vector spaces with their historical developments rather than provide a technical explanation. This exploration underscores the broader implications of vector spaces in understanding complex mathematical and physical theories.
fresh_42
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
2024 Award
Messages
20,684
Reaction score
28,045
A vector space is an additively written abelian group together with a field that operates on it.

Vector spaces are often described as a set of arrows, i.e. a line segment with a direction that can be added, stretched, or compressed. That’s where the term linear to describe addition and operation, and the term scalar for the scaling factor from the operating field come from. Although there is basically no difference between the two definitions, the abstract definition is preferable. Simply because we can add objects like sequences, power series, matrices or more general functions that are usually not associated with arrows, and we can have fields like finite fields, function fields, or p-adic numbers that are usually not considered to represent a stretching factor. ...

Continue reading...

This article does not aim to explain vector spaces. Its goal is to connect the concept and the historical developments. I have found and cited some interesting comments during my research (and included links to the original papers as far as it was possible without getting into conflicts with copyright laws), especially Schrödinger's remarks about the comparison of his formalism of QM with Heisenberg's. And where that "eigen-" thing came from.
 
Last edited:
  • Like
Likes HarshaVardhana, Math100, bhobba and 5 others
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Replies
10
Views
3K
Replies
82
Views
8K
Replies
0
Views
3K
Replies
38
Views
6K
Replies
13
Views
8K
Replies
3
Views
2K
Back
Top