B Wolfram Alpha's Why the 2 i π n?

  • B
  • Thread starter Thread starter OmCheeto
  • Start date Start date
AI Thread Summary
Wolfram Alpha provides the solution x = (log(y/a) + 2 i π n)/b for the equation y = a * e^(b*x), incorporating the term '2 i π n' to account for all possible complex solutions. The logarithm function has multiple branches in the complex plane, leading to these additional solutions. The original solution x = log(y/a)/b represents only the real solution, while Wolfram's answer includes both real and complex solutions. The complex exponential e^(2iπn) simplifies to 1, confirming that these solutions are valid. Thus, Wolfram Alpha's approach is more comprehensive, offering a complete set of solutions.
OmCheeto
Gold Member
Messages
2,478
Reaction score
3,369
Was going through an old spreadsheet and I re-did some math that I had originally noted that I had done incorrectly. It seemed trivially simple but I wanted to double check with Wolfram to make sure I wasn't missing something.

Here's what I typed in: solve for x when y = a * e^(b*x)

Wolfram Alphas solution: x = (log(y/a) + 2 i π n)/b and a!=0 and y!=0 and b!=0 and n element Z

Why did Wolfram Alpha add the ‘2 i π n’ ?
My solution was x = log(y/a)/b
 
Mathematics news on Phys.org
Wolfram is giving you all the solutions, including complex solutions. The logarithm function has several branches in the complex plane, each with a valid solution. If you were not expected to know about the complex solutions, then your single solution was the expected one. Otherwise, the Wolfram answer is better.
 
  • Like
Likes Hornbein, topsquark, OmCheeto and 1 other person
Plug the answer back in to your formula.$$\begin{eqnarray*}
y&=&ae^{b(\log(y/a)+2i\pi n)/b}\\
&=&ae^{\log(y/a)}e^{2i\pi n}\\
&=&ye^{2i\pi n}
\end{eqnarray*}$$The extra exponential on the right is a complex exponential - it turns out that ##e^{i\phi}=\cos(\phi)+i\sin(\phi)##. And that means that ##e^{2i\pi n}=1##, so the right hand side in my third line above is also equal to ##y##.

As FactChecker says, Wolfram is providing all solutions, including complex ones. The ##n=0## solution is the same as yours and is the only real solution. But ##n=\ldots,-3,-2,-1,1,2,3,\ldots## complex solutions also satisfy the requirements you gave Wolfram.
 
  • Like
Likes FactChecker, topsquark, OmCheeto and 1 other person
Thanks!
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top