MHB Word problem - Application of linear equations

AI Thread Summary
The discussion revolves around solving a word problem involving linear equations related to student enrollment in English courses based on an aptitude exam. The problem states that in a class of 1240 students, more students are enrolled in English fundamentals than in English composition. If 30 more students had passed the exam, both courses would have equal enrollment. The correct equations to solve are established, leading to the conclusion that 605 students are taking English composition and 635 are in English fundamentals. The solution is confirmed as accurate based on the provided reasoning and calculations.
paulmdrdo1
Messages
382
Reaction score
0
Every freshman student at a particular college is required to take an english aptitude exam. A student who passes the examination enrolls in english composition, and a student who fails the test must enroll in english fundamentals. In a freshman class of 1240 students there are more students enrolled in english fundamentals than in english composition. However, if 30 more students had passed the test, each course would have the same enrollment. how many students are taking each course?

My solution

let $x=$number of students who passed

$1240-x =$ number of students who failed

$x+30=1240-x$

$2x=1240-30$
$2x=1210$
$x=605$

605 students are taking English Composition
635 students are taking English fundamentals

is my solution correct?

thanks!
 
Mathematics news on Phys.org
I would let $P$ be the number who passed and $F$ be the number who failed. We are given in the problem:

$$P+F=1240$$

$$P+30=F-30$$

Note that if we add 30 to those that passed, then we have to subtract 30 from those that failed. So solve this system...what do you find?
 
paulmdrdo said:
Every freshman student at a particular college is required to take an english aptitude exam. A student who passes the examination enrolls in english composition, and a student who fails the test must enroll in english fundamentals. In a freshman class of 1240 students there are more students enrolled in english fundamentals than in english composition. However, if 30 more students had passed the test, each course would have the same enrollment. how many students are taking each course?

My solution

let $x=$number of students who passed

$1240-x =$ number of students who failed

$x+30=1240-x$
This is incorrect. "If 30 more students had passed the test" then, yes, the number of students who passed and so must take one course is x+ 30 but then the number who failed, and must take the other course would be 30 less: 1240- (x+ 30)= 1210- x.

The equation you want to solve is x+ 30= 1210- x.
$2x=1240-30$
$2x=1210$
$x=605$

605 students are taking English Composition
635 students are taking English fundamentals

is my solution correct?

thanks!
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top