MHB Word problem - linear equation.

paulmdrdo1
Messages
382
Reaction score
0
please help me with this problem

please use single variable only.

The length of a rectangular swimming pool is twice its width. The pool is surrounded by a cement walk 4ft wide. If the area of the walk is 748 ft^2, determine the dimensions of the pool.

let x = width of the pool
2x = length of the pool

the dimensions of the pool and cement walk combined

x+8 = width
2x+8 = length

the area of the pool plus the area of the cement walk is equal to the whole area.

$(2x+8)(x+8)=748+2x^2$

$x= 28.5$

the dimensions of the pool is 28.5 ft by 57 ft.

but the answer in my book is 30 ft. by 60 ft. why is that? where did I miss?

regards!

please use one variable only.
 
Mathematics news on Phys.org
The area of the walk (using your variables) is:

$$2(4x+4(2x+8))=748$$

$$4(6x+16)=748$$

$$6x+16=187$$

$$6x=171$$

$$x=28.5$$

I agree with you.
 
If the answer is 30 ft x 60 ft then the area of the walk would be 784, not 748. Did you read the question correctly?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
2
Views
2K
Replies
1
Views
1K
Replies
1
Views
2K
Replies
7
Views
3K
Replies
6
Views
2K
Replies
1
Views
2K
Back
Top