Work per particle of a NaCl chain

AI Thread Summary
The discussion focuses on calculating the work per particle for assembling an infinite NaCl chain. Participants clarify that the chain is indeed infinite and discuss the interaction energy between ions, specifically how to sum the energies of pairs involving a central ion. The importance of avoiding double counting in the calculations is emphasized, along with hints to simplify the work, such as using the series expansion of ln(2) and defining a constant for the interaction energy. The original poster confirms they have resolved the problem with the assistance of others.
guyvsdcsniper
Messages
264
Reaction score
37
Homework Statement
Find the work per particle required to assemble such a configuration.
Problem
Relevant Equations
W=qV
The problem states to find the work per particle to assemble the following NaCl chain.
I just want to post my work here to verify I have the correct answer.

My work is attached in the image provided.
Screen Shot 2022-02-28 at 5.02.37 PM.png
 
Physics news on Phys.org
Is this chain supposed to be infinite? (or of length 8?)
 
  • Like
Likes guyvsdcsniper
ergospherical said:
Is this chain supposed to be infinite? (or of length 8?)
Ah it does say infinite, I missed that in the question.
 
Right. Well in that case, focus on a particular ion in the chain (labelled "0" below):
##\dots \ominus_{-3} \oplus_{-2} \ominus_{-1} \oplus_0 \ominus_1 \oplus_{2} \ominus_{3} \dots##

Let the interaction energy between ##m## and ##n## be ##U(m,n)##. Assuming each ion to be separated by a distance ##a## from its nearest neighbours, what's the sum of the interaction energies of all the pairs including the ion ##n=0##, i.e. ##U(0,1) + U(-1,0) + U(0,2) + U(-2,0) + \dots##?

How might you use this to work out the total energy per particle, which is proportional to ##\sum\limits_{\substack{m,n \\ m<n}} U(m,n)##? Be careful not to double count.
 
  • Like
Likes guyvsdcsniper and Hamiltonian
Edited

If you haven't already sorted this out, here are a couple of hints which should help:
- familiarise yourself with the series expansion of ##ln(2)##;
- make your working simpler/neater by defining ##A = \frac {q^2}{4 \pi \epsilon_0}##.
 
Last edited:
  • Like
Likes guyvsdcsniper and Hamiltonian
I figured it out. Thank you both for your help.
 
  • Like
Likes Steve4Physics
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top