MHB -write expression in expanded form...find the sum

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Expression Sum
AI Thread Summary
The discussion focuses on writing expressions in expanded form and calculating their sums. Participants analyze three specific summations, correcting each other's work and clarifying the calculations. The first summation results in -6, the second totals 40, and the third is identified as an infinite geometric series converging to 10. There is a mention of the difficulty in expanding the third expression and a suggestion for improving LaTeX rendering options for easier use. Overall, the conversation emphasizes collaborative problem-solving in mathematical expressions.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
nmh{2000} index{expanded form}
write each expression in expanded form and then find the sum
$
\begin{array}{l}
{{9}{\mathrm{)}}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\mathop{\sum}\limits_{{n}\mathrm{{=}}{3}}\limits^{5}{\mathrm{(}{n}^{2}}\mathrm{{-}}{2}^{n}{\mathrm{)}}}=(3^2-2^3)+(4^2-2^4)+(5^2-2^5)=-6
\\{{\mathrm{10}}{\mathrm{)}}\hspace{0.33em}\hspace{0.33em}\mathop{\sum}\limits_{{t}\mathrm{{=}}{1}}\limits^{5}{{t}{\mathrm{(}}{t}\mathrm{{-}}{1}{\mathrm{)}}}}
=1(1-1)+2(2-1)+3(3-1)+5(5-1)=40
\\{{\mathrm{11}}{\mathrm{)}}\hspace{0.33em}\hspace{0.33em}\mathop{\sum}\limits_{{i}\mathrm{{=}}{1}}\limits^{\mathrm{\infty}}{\mathrm{10}{\mathrm{\left({\frac{1}{2}}\right)}}^{i}}}
+10\left(\frac{1}{2}\right)^1
+10\left(\frac{1}{2}\right))^2
+10\left(\frac{1}{2}\right)^3
...=10\left(\frac{1}{2}\right)^i=10
\end{array}
$
hoped answers ok
no sure how to expand 11)
 
Last edited:
Mathematics news on Phys.org
9. Correct.

10. You omitted the 4(4 - 1) term, otherwise correct.

11. It's an infinite geometric series that converges to a constant. Given that

$$\sum_{n=1}^{\infty}\left(\dfrac12\right)^{1/2}=\dfrac12\lim_{n\to\infty}\dfrac{1-r^n}{1-r}$$

with $r=\dfrac12$, can you compute the result?

Edit: Didn't see the '10' on the right. Ah well, no harm done. As for an expansion, what you have is sufficient I think, just omit the $10\left(\dfrac12\right)^i$ between the expansion and the '10'. ;)
 
Last edited:
Okay gotit
Don't find these easy😩😩😩

Mahalo

BTW I tried math magic but wasn't worth it
However be nice to have the option
to render latex into an image if we want to use it someplace else

Cropping it out of post with gray background is painful
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top