MHB -write expression in expanded form...find the sum

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Expression Sum
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
nmh{2000} index{expanded form}
write each expression in expanded form and then find the sum
$
\begin{array}{l}
{{9}{\mathrm{)}}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\mathop{\sum}\limits_{{n}\mathrm{{=}}{3}}\limits^{5}{\mathrm{(}{n}^{2}}\mathrm{{-}}{2}^{n}{\mathrm{)}}}=(3^2-2^3)+(4^2-2^4)+(5^2-2^5)=-6
\\{{\mathrm{10}}{\mathrm{)}}\hspace{0.33em}\hspace{0.33em}\mathop{\sum}\limits_{{t}\mathrm{{=}}{1}}\limits^{5}{{t}{\mathrm{(}}{t}\mathrm{{-}}{1}{\mathrm{)}}}}
=1(1-1)+2(2-1)+3(3-1)+5(5-1)=40
\\{{\mathrm{11}}{\mathrm{)}}\hspace{0.33em}\hspace{0.33em}\mathop{\sum}\limits_{{i}\mathrm{{=}}{1}}\limits^{\mathrm{\infty}}{\mathrm{10}{\mathrm{\left({\frac{1}{2}}\right)}}^{i}}}
+10\left(\frac{1}{2}\right)^1
+10\left(\frac{1}{2}\right))^2
+10\left(\frac{1}{2}\right)^3
...=10\left(\frac{1}{2}\right)^i=10
\end{array}
$
hoped answers ok
no sure how to expand 11)
 
Last edited:
Mathematics news on Phys.org
9. Correct.

10. You omitted the 4(4 - 1) term, otherwise correct.

11. It's an infinite geometric series that converges to a constant. Given that

$$\sum_{n=1}^{\infty}\left(\dfrac12\right)^{1/2}=\dfrac12\lim_{n\to\infty}\dfrac{1-r^n}{1-r}$$

with $r=\dfrac12$, can you compute the result?

Edit: Didn't see the '10' on the right. Ah well, no harm done. As for an expansion, what you have is sufficient I think, just omit the $10\left(\dfrac12\right)^i$ between the expansion and the '10'. ;)
 
Last edited:
Okay gotit
Don't find these easy😩😩😩

Mahalo

BTW I tried math magic but wasn't worth it
However be nice to have the option
to render latex into an image if we want to use it someplace else

Cropping it out of post with gray background is painful
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top