Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

B What Integral Transform is this?

  1. Mar 23, 2017 #1
    What is the transformation used
    Is there any explanation for :
    $$
    \frac{\mathit{\lambda}}{\mathit{\Gamma}{\mathrm{(}}{q}{\mathrm{)}}}\mathop{\int}\limits_{t0}\limits^{t}{{\mathrm{(}}{t}\mathrm{{-}}{s}{\mathrm{)}}^{{q}\mathrm{{-}}{1}}}{x}_{0}\mathrm{(}s\mathrm{)}ds
    $$
    How did become like this
    $$
    \frac{{x}_{0}\hspace{0.33em}\mathit{\lambda}}{\mathit{\Gamma}{\mathrm{(}}{q}{\mathrm{)}}\mathit{\Gamma}{\mathrm{(}}{q}{\mathrm{)}}}\mathop{\int}\limits_{0}\limits^{1}{{\mathrm{(}}{t}\mathrm{{-}}{t}_{0}}{\mathrm{)}}^{{2}{q}\mathrm{{-}}{1}}{\mathrm{(}}{1}\mathrm{{-}}\mathit{\sigma}{\mathrm{)}}^{{q}\mathrm{{-}}{1}}{\mathit{\sigma}}^{{q}\mathrm{{-}}{1}}{d}\mathit{\sigma}
    $$
    Where:
    $$
    {x}_{0}{\mathrm{(}}{t}{\mathrm{)}}\mathrm{{=}}\frac{{x}_{0}{\mathrm{(}}{t}\mathrm{{-}}{t}_{0}{\mathrm{)}}^{{q}\mathrm{{-}}{1}}}{\mathit{\Gamma}{\mathrm{(}}{q}{\mathrm{)}}}
    $$
     
  2. jcsd
  3. Mar 23, 2017 #2

    jedishrfu

    Staff: Mentor

    Can you provide some context here? Where did you see this transformation and what were you studying?
     
  4. Mar 23, 2017 #3
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: What Integral Transform is this?
  1. What is an integral? (Replies: 7)

Loading...