Writing a logarithm in a form not involving logarithms

Click For Summary
SUMMARY

The discussion centers on the equation logyx + logxy = 3/2 and the challenge of expressing it without logarithms. The quadratic equation derived from this is (logyx)2 - (3/2)logyx - 1 = 0. Participants clarify that solving this quadratic will yield possible values for logyx, but not specific values for x and y. The solutions for logyx may involve complex numbers, complicating the interpretation.

PREREQUISITES
  • Understanding of logarithmic identities, specifically logxy = 1/logyx
  • Familiarity with solving quadratic equations
  • Knowledge of complex numbers and their properties
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the properties of logarithms and their transformations
  • Learn how to solve quadratic equations using the quadratic formula
  • Explore the implications of complex solutions in logarithmic equations
  • Investigate the relationship between exponential and logarithmic forms
USEFUL FOR

Students and educators in mathematics, particularly those focusing on algebra and logarithmic functions, as well as anyone interested in solving complex equations.

Chijioke
Messages
14
Reaction score
3
Homework Statement
Write this in a form not involving logarithm.
Relevant Equations
$$\log_x(y)=1/\log_y(x)$$
logyx + logxy = 3/2
Solution
$$\begin{align*}\log_{ y }{ x } + \log_{ x }{ y } &= \frac{ 3 }{ 2 } \\
\log_{ x }{ y } &= \frac{ \log_{ y }{ y } }{ \log_{ y }{ x } } \\
\log_{ y }{ x } + \frac{ 1 }{ \log_{ y }{ x } } &= \frac{ 3 }{ 2 } \\
\left(\log_{ y }{ x } \right)^ { 2 } + 1 &= \frac{ 3 }{ 2 } \left(\log_{ y }{ x } \right) \\
\left(\log_{ y }{ x } \right) ^ { 2 } &= \frac{ 3 }{ 2 } \left(\log_{ y }{ x }\right) - 1
\end{align*}$$
What do I do next?
 
Last edited by a moderator:
Physics news on Phys.org
You have a quadratic equation in \log_y x. Solve it.
 
Chijioke said:
Homework Statement:: Write this in a form not involving logarithm.
Relevant Equations:: $$\log_x(y)=1/\log_y(x)$$

logyx + logxy = 3/2
Solution
$$\begin{align*}\log_{ y }{ x } + \log_{ x }{ y } &= \frac{ 3 }{ 2 } \\
\log_{ x }{ y } &= \frac{ \log_{ y }{ y } }{ \log_{ y }{ x } } \\
\log_{ y }{ x } + \frac{ 1 }{ \log_{ y }{ x } } &= \frac{ 3 }{ 2 } \\
\left(\log_{ y }{ x } \right)^ { 2 } + 1 &= \frac{ 3 }{ 2 } \left(\log_{ y }{ x } \right) \\
\left(\log_{ y }{ x } \right) ^ { 2 } &= \frac{ 3 }{ 2 } \left(\log_{ y }{ x }\right) - 1
\end{align*}$$
What do I do next?
Hello @Chijioke.

:welcome:

I'm pretty sure that the problem as stated has no solution.

However,

##\displaystyle \ \log_y x - \log_x y =\frac 3 2 \ ##

does have a solution.
 
  • Like
Likes   Reactions: scottdave, Chijioke and PeroK
I was not asked to find the value of x and y. I was only asked to write it in a form not involving logarithm. Is writing it in a form not involving logarithm the same as finding the value of x and y or solving the equation persay?
 
Chijioke said:
I was not asked to find the value of x and y. I was only asked to write it in a form not involving logarithm. Is writing it in a form not involving logarithm the same as finding the value of x and y or solving the equation persay?
"Solving" the quadratic equation, as suggested by @pasmith, will not give specific values for ##x## and/or ##y##. What the solution gives is possible values for ##\displaystyle \log_y x## or equivalently, values for ##\displaystyle \log_x y## .

Let's say you get the result ##\displaystyle \beta= \log_y x##, for some real number, ##\displaystyle \beta##. Writing that in exponential form gives you:

##\displaystyle x=y^{\,\beta}##

A difficulty with the problem, as it is written, is that the solutions for ##\beta## are complex numbers, that is, they have an imaginary part.
 
  • Like
Likes   Reactions: Chijioke and PeroK

Similar threads

Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K