Writing a statement symbolically

  • Context: MHB 
  • Thread starter Thread starter thxrx
  • Start date Start date
  • Tags Tags
    Writing
Click For Summary
SUMMARY

The discussion focuses on translating verbal statements into symbolic logic using predicates. The statement "Some accountants own a Porsche" is represented as ∃x (P(x) ∧ Q(x)), indicating the existence of at least one accountant who owns a Porsche. The statement "All owners of Porsche are accountants" is symbolized as ∀x (Q(x) → P(x)), asserting that every individual who owns a Porsche is an accountant.

PREREQUISITES
  • Understanding of predicate logic and quantifiers
  • Familiarity with symbolic notation in logic
  • Knowledge of basic logical statements and their representations
  • Experience with logical implications and conjunctions
NEXT STEPS
  • Study the principles of predicate logic in detail
  • Learn about the use of quantifiers in symbolic logic
  • Explore logical equivalences and transformations
  • Practice translating complex verbal statements into symbolic form
USEFUL FOR

Students of mathematics, philosophy, computer science, and anyone interested in formal logic and its applications in reasoning and problem-solving.

thxrx
Messages
1
Reaction score
0
Let P(x) denote the statement "x is an accountant", and let Q(x) denote that statement "x owns a Porsche".Write the following statements symbolically.

i) Some accountants own a Porsche.

ii) All owners of Porsche are accountants.
 
Physics news on Phys.org
What have you tried?
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 49 ·
2
Replies
49
Views
5K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K