- #1
SithsNGiggles
- 186
- 0
Homework Statement
In my book, I'm given that ##\vec{x}_1=\left(\begin{matrix}t^2\\t\end{matrix}\right), \vec{x}_2=\left(\begin{matrix}0\\1+t\end{matrix}\right), \vec{x}_3=\left(\begin{matrix}-t^2\\1\end{matrix}\right)## are solutions. My textbook presents an algebraic way to show that the vectors are linear independent, but I was hoping to see if I can use the Wronskian to show the same result.
Homework Equations
The Attempt at a Solution
I thought this was how the Wronskian would look:
##W\left(\vec{x}_1, \vec{x}_2, \vec{x}_3\right)=
\left|\begin{matrix}
\left(\begin{matrix}t^2\\1\end{matrix}\right) & \left(\begin{matrix}0\\1+t\end{matrix}\right) & \left(\begin{matrix}-t^2\\1\end{matrix}\right)\\
\left(\begin{matrix}2t\\0\end{matrix}\right) & \left(\begin{matrix}0\\1\end{matrix}\right) & \left(\begin{matrix}-2t\\0\end{matrix}\right)\\
\left(\begin{matrix}2\\0\end{matrix}\right) & \left(\begin{matrix}0\\0\end{matrix}\right) & \left(\begin{matrix}-2\\0\end{matrix}\right)
\end{matrix}\right|##
But I couldn't see how to proceed from there, since matrix multiplication won't work. How would I find this determinant?