X^6 - y^6 As Difference of Squares

  • Context: MHB 
  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Difference Squares
Click For Summary
SUMMARY

The expression x^6 - y^6 can be factored as a difference of squares using the formula (x^3 - y^3)(x^3 + y^3). Further factoring involves applying the difference of cubes to the left factor and the sum of cubes to the right factor, resulting in x^6 - y^6 = (x^2 - y^2)(x^4 + x^2y^2 + y^4). The second factor can be expressed as (x^2 + xy + y^2)(x^2 - xy + y^2) after equating coefficients from the polynomial expansion. This method demonstrates the effective use of both difference of squares and cubes in polynomial factorization.

PREREQUISITES
  • Understanding of polynomial factorization techniques
  • Familiarity with difference of squares and difference of cubes
  • Knowledge of algebraic identities and coefficient comparison
  • Basic skills in manipulating algebraic expressions
NEXT STEPS
  • Study the application of the difference of squares in polynomial equations
  • Learn about the difference of cubes and its factoring techniques
  • Explore advanced polynomial identities and their proofs
  • Practice solving polynomial equations using various factoring methods
USEFUL FOR

Mathematics students, educators, and anyone interested in mastering polynomial factorization techniques, particularly in algebra and higher-level mathematics.

mathdad
Messages
1,280
Reaction score
0
Factor x^6 - y^6 as a difference of squares.

Solution:

(x^3 - y^3)(x^3 + y^3)

The problems states to use the difference of squares.

I can apply the difference of cubes to the left factor and the sum of cubes to the right factor but how do I continue using the difference of squares?
 
Mathematics news on Phys.org
Once you've done that' you've applied the difference of squares...to continue factoring further, as you noted, you need to use the sum/difference of cubes. Now, if you begin with the difference of cubes, you'd have:

$$x^6-y^6=(x^2-y^2)(x^4+x^2y^2+y^4)$$

Now to continue, you would use the difference of squares on the first factor. To factor the second factor, we can try:

$$x^4+x^2y^2+y^4=(x^2+axy+y^2)(x^2+bxy+y^2)=x^4+(a+b)x^3y+(ab+2)x^2y^2+(a+b)axy^3+y^4$$

Equating coefficients, we obtain the system:

$$a+b=0\implies a=-b$$

$$ab+2=1\implies ab=-1$$

And so we find:

$$(a,b)=(\pm1,\mp1)$$

And we may write:

$$x^4+x^2y^2+y^4=(x^2+xy+y^2)(x^2-xy+y^2)$$

This is what we would find by using the difference of squares first, and then applying the sum/difference of cubes, so that's the simpler route to take. :D
 
MarkFL said:
Once you've done that' you've applied the difference of squares...to continue factoring further, as you noted, you need to use the sum/difference of cubes. Now, if you begin with the difference of cubes, you'd have:

$$x^6-y^6=(x^2-y^2)(x^4+x^2y^2+y^4)$$

Now to continue, you would use the difference of squares on the first factor. To factor the second factor, we can try:

$$x^4+x^2y^2+y^4=(x^2+axy+y^2)(x^2+bxy+y^2)=x^4+(a+b)x^3y+(ab+2)x^2y^2+(a+b)axy^3+y^4$$

Equating coefficients, we obtain the system:

$$a+b=0\implies a=-b$$

$$ab+2=1\implies ab=-1$$

And so we find:

$$(a,b)=(\pm1,\mp1)$$

And we may write:

$$x^4+x^2y^2+y^4=(x^2+xy+y^2)(x^2-xy+y^2)$$

This is what we would find by using the difference of squares first, and then applying the sum/difference of cubes, so that's the simpler route to take. :D

I can use u and v in terms of (x^4+x^2y^2+y^4) just like I did in the other post, right?
 
RTCNTC said:
I can use u and v in terms of (x^4+x^2y^2+y^4) just like I did in the other post, right?

You'd wind up with radicals if you do that. :D
 
Good information.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 38 ·
2
Replies
38
Views
5K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 68 ·
3
Replies
68
Views
12K
  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K