I assume you mean that is the solution for the function I called "x1". You still need to find x2 in order to find the vector function solution. Remember that you are solving a "vector differential equation" so you need a function for both components.
T=As for "the third term which doesn't have a constant", the set of all solutions to a second order linear homogeneous differential equation, here t^2x_1''- tx_1'+ x_1= 0, form a two dimensional vector space. The two functions, t and t ln(t) are "basis vectors" for that linear space. Every solution can be written as a linear combination of them: c1t+ c2 t ln(t).
The set of all solutions to a linear non-homogeneous equation, t^2x_1''- tx_1+ x_1= 2t form a "linear manifold". Where you can think of a linear vector space, geometrically, as a plane containing the origin so a "linear manifold" can be thought of as a line or plane that does NOT contain the origin. What we can do with such a set is imagine as using the plane through the origin parallel to that linear manifold. We can represent a point on that "manifold" as a vector in the "parallel" vector space plus a vector to that plane. The set of all points (here, functions) in that manifold can be represented as a general function in that parallel two dimensional space plus that one vector to the plane.