I ##x\lt y \lt z## positive integer numbers and if ##\dfrac 1x+\dfrac 1y+\dfrac 1z=\dfrac 13##

  • I
  • Thread starter Thread starter littlemathquark
  • Start date Start date
littlemathquark
Messages
204
Reaction score
26
TL;DR Summary
İf ##x\lt y \lt z## positive integer numbers and if ##\dfrac 1x+\dfrac 1y+\dfrac 1z=\dfrac 13## then find the minumum and maximum value of sum of ##x+y+z##
I can solve diophantine equation of ##\dfrac 1x+\dfrac 1y+\dfrac 1z=\dfrac 13##. But do I have to find the individual values of x, y, and z to find the minimum and maximum value of the sum? Isn't there an algorithm that gives the smallest and biggest sum of denominator values?
 
Last edited:
Mathematics news on Phys.org
Well, there is an algorithm. WA says that there are ##15## solutions, with ##31## being the minimum and ##173## the maximum. it looks as if they eliminated ##z## and solved the remaining two-dimensional lattice problem.

Observation: ##3\,|\,xyz## and looking at the results, we see that ##3\,|\,z.## Could be a point to start with.
 
Last edited:
fresh_42 said:
Well, there is an algorithm. WA says that there are ##15## solutions, with ##31## being the minimum and ##173## the maximum. it looks as if they eliminated ##z## and solved the remaining two-dimensional lattice problem.
Well, I didn't mean that. I was asking if there's an algorithm that can directly output the values for the minimum as ##1/3 =1/6+1/10+1/15## or for the maximum as ##1/3=1/4+1/13+1/156##
İn fact I know algorithm ##1/x=(1/x(x+1)) +(1/(x+1))## and I think it's produce maximum denominators.
 
littlemathquark said:
I didn't mean that. I was asking if there's an algorithm that can directly output the values for the minimum as ##1/3 =1/6+1/10+1/15## or for the maximum as ##1/3=1/4+1/13+1/156##
İn fact I know algortihm ##1/x=(1/x(x+1)) +(1/(x+1))## and I think it's produce maximum denominators.
Yes, and I answered your question. There exists an algorithm simply because WA uses one. I don't know which one, but I suggested a reduction to a lattice problem. Look up lattice algorithms.

Here is a starting point:
https://sites.math.washington.edu/~rothvoss/lecturenotes/IntOpt-and-Lattices.pdf
 
Last edited:
  • Like
Likes littlemathquark
My solution like this: I solved for ##x\ge y\ge z##

İt's clear ##x,y,z >3##



Let ##x\leq y\leq z##. Then ##\frac{1}{z} \leq \frac{1}{y} \leq \frac{1}{x}## and ##\frac{1}{3} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \leq \frac{3}{x}##, ##x \leq 9## that is ##4\leq x \leq 9##

İf ##x=4## then ##\frac{1}{3} = \frac{1}{4} + \frac{1}{y} + \frac{1}{z} ##, ##\frac{1}{12} = \frac{1}{y} + \frac{1}{z} \leq \frac{2}{y}##, ##y\leq 24##

##\frac{1}{z} = \frac{y-12}{12y}##, ##z=\frac{12y}{y-12} = 12+\frac{144}{y-12}##

##13 \leq y \leq 24##

##(x=4,y=13, z=156), (x=4,y=14, z=84), (x=4,y=15, z=60), (x=4,y=16, z=48) (x=4,y=18, z=36), (x=4,y=20, z=30),(x=4,y=21, z=28),(x=4,y=24, z=24)##



if ##x=5## then ##\frac{1}{3} = \frac{1}{5} + \frac{1}{y} + \frac{1}{z} ##, ##\frac{2}{15} = \frac{1}{y} + \frac{1}{z} \leq \frac{2}{y}##, ##y \leq 15##

##\frac{1}{z} = \frac{2y-15}{15y}##, ##z=\frac{15y}{2y-15} = 7+\frac{y}{2y-15}##

##8 \leq y \leq 15##.

##(x=5,y=8, z=120), (x=5,y=9, z=45), (x=5,y=10, z=30), (x=5,y=12, z=20),(x=5,y=15, z=15)##



if ##x=6## then ##\frac{1}{3} = \frac{1}{6} + \frac{1}{y} + \frac{1}{z} ##, ##\frac{1}{6} = \frac{1}{y} + \frac{1}{z} \leq \frac{2}{y}##

##y \leq 12##

##\frac{1}{z} = \frac{y-6}{6y}##, ##z=\frac{6y}{y-6} = 6+\frac{36}{y-6}##

##7 \leq y \leq 12##.

##(x=6,y=7, z=42), (x=6,y=8, z=24),(x=6,y=9, z=18),(x=6,y=10, z=15),(x=6,y=12, z=12)##



if ##x=7## then ##\frac{1}{3} = \frac{1}{7} + \frac{1}{y} + \frac{1}{z} ##, ##\frac{4}{21} = \frac{1}{y} + \frac{1}{z} \leq \frac{2}{y}##

##y \leq 10##

##\frac{1}{z} = \frac{4y-21}{21y}##, ##z=\frac{21y}{4y-21} = 5+\frac{y+105}{4y-21}##

##7 \leq y \leq 10##.

##(x=7,y=7, z=21)##



if ##x=8## then ##\frac{1}{3} = \frac{1}{8} + \frac{1}{y} + \frac{1}{z} ##, ##\frac{5}{24} = \frac{1}{y} + \frac{1}{z} \leq \frac{2}{y}##

## y \leq 9##

##\frac{1}{z} = \frac{5y-24}{24y}##, ##z=\frac{24y}{5y-24} = 4+\frac{4y+96}{5y-24}##

##8 \leq y \leq 9##.

##(x=8,y=8, z=12)##



if ##x=9## then ##\frac{1}{3} = \frac{1}{9} + \frac{1}{y} + \frac{1}{z} ##, ##\frac{2}{9} = \frac{1}{y} + \frac{1}{z} \leq \frac{2}{y}##

##y=9##

##(x=9,y=9, z=9)##

There is ##21## solutions.
 
You said ##0<x<y<z##, so there are fewer than 21 solutions.
 
Yes, I solved
for ##x\ge y\ge z\ge 0##
 
Back
Top