##x\lt y \lt z## positive integer numbers and if ##\dfrac 1x+\dfrac 1y+\dfrac 1z=\dfrac 13##

  • Context: Undergrad 
  • Thread starter Thread starter littlemathquark
  • Start date Start date
Click For Summary
SUMMARY

The forum discussion centers on solving the Diophantine equation ##\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z} = \dfrac{1}{3}## for positive integers x, y, and z. The discussion reveals that there are 15 solutions, with the minimum sum of denominators being 31 and the maximum being 173. Participants suggest using lattice algorithms to find these solutions, and one specific algorithm mentioned is ##1/x = (1/x(x+1)) + (1/(x+1))##, which is believed to produce maximum denominators. The values of x, y, and z are constrained to specific ranges based on their relationships.

PREREQUISITES
  • Understanding of Diophantine equations
  • Familiarity with lattice algorithms
  • Knowledge of mathematical optimization techniques
  • Basic algebraic manipulation skills
NEXT STEPS
  • Research lattice algorithms for optimization problems
  • Study the properties of Diophantine equations
  • Explore the algorithm ##1/x = (1/x(x+1)) + (1/(x+1))## in detail
  • Investigate methods for finding integer solutions to equations
USEFUL FOR

Mathematicians, students studying number theory, and anyone interested in solving Diophantine equations or optimizing mathematical problems.

littlemathquark
Messages
204
Reaction score
26
TL;DR
İf ##x\lt y \lt z## positive integer numbers and if ##\dfrac 1x+\dfrac 1y+\dfrac 1z=\dfrac 13## then find the minumum and maximum value of sum of ##x+y+z##
I can solve diophantine equation of ##\dfrac 1x+\dfrac 1y+\dfrac 1z=\dfrac 13##. But do I have to find the individual values of x, y, and z to find the minimum and maximum value of the sum? Isn't there an algorithm that gives the smallest and biggest sum of denominator values?
 
Last edited:
Mathematics news on Phys.org
Well, there is an algorithm. WA says that there are ##15## solutions, with ##31## being the minimum and ##173## the maximum. it looks as if they eliminated ##z## and solved the remaining two-dimensional lattice problem.

Observation: ##3\,|\,xyz## and looking at the results, we see that ##3\,|\,z.## Could be a point to start with.
 
Last edited:
fresh_42 said:
Well, there is an algorithm. WA says that there are ##15## solutions, with ##31## being the minimum and ##173## the maximum. it looks as if they eliminated ##z## and solved the remaining two-dimensional lattice problem.
Well, I didn't mean that. I was asking if there's an algorithm that can directly output the values for the minimum as ##1/3 =1/6+1/10+1/15## or for the maximum as ##1/3=1/4+1/13+1/156##
İn fact I know algorithm ##1/x=(1/x(x+1)) +(1/(x+1))## and I think it's produce maximum denominators.
 
littlemathquark said:
I didn't mean that. I was asking if there's an algorithm that can directly output the values for the minimum as ##1/3 =1/6+1/10+1/15## or for the maximum as ##1/3=1/4+1/13+1/156##
İn fact I know algortihm ##1/x=(1/x(x+1)) +(1/(x+1))## and I think it's produce maximum denominators.
Yes, and I answered your question. There exists an algorithm simply because WA uses one. I don't know which one, but I suggested a reduction to a lattice problem. Look up lattice algorithms.

Here is a starting point:
https://sites.math.washington.edu/~rothvoss/lecturenotes/IntOpt-and-Lattices.pdf
 
Last edited:
  • Like
Likes   Reactions: littlemathquark
My solution like this: I solved for ##x\ge y\ge z##

İt's clear ##x,y,z >3##



Let ##x\leq y\leq z##. Then ##\frac{1}{z} \leq \frac{1}{y} \leq \frac{1}{x}## and ##\frac{1}{3} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \leq \frac{3}{x}##, ##x \leq 9## that is ##4\leq x \leq 9##

İf ##x=4## then ##\frac{1}{3} = \frac{1}{4} + \frac{1}{y} + \frac{1}{z} ##, ##\frac{1}{12} = \frac{1}{y} + \frac{1}{z} \leq \frac{2}{y}##, ##y\leq 24##

##\frac{1}{z} = \frac{y-12}{12y}##, ##z=\frac{12y}{y-12} = 12+\frac{144}{y-12}##

##13 \leq y \leq 24##

##(x=4,y=13, z=156), (x=4,y=14, z=84), (x=4,y=15, z=60), (x=4,y=16, z=48) (x=4,y=18, z=36), (x=4,y=20, z=30),(x=4,y=21, z=28),(x=4,y=24, z=24)##



if ##x=5## then ##\frac{1}{3} = \frac{1}{5} + \frac{1}{y} + \frac{1}{z} ##, ##\frac{2}{15} = \frac{1}{y} + \frac{1}{z} \leq \frac{2}{y}##, ##y \leq 15##

##\frac{1}{z} = \frac{2y-15}{15y}##, ##z=\frac{15y}{2y-15} = 7+\frac{y}{2y-15}##

##8 \leq y \leq 15##.

##(x=5,y=8, z=120), (x=5,y=9, z=45), (x=5,y=10, z=30), (x=5,y=12, z=20),(x=5,y=15, z=15)##



if ##x=6## then ##\frac{1}{3} = \frac{1}{6} + \frac{1}{y} + \frac{1}{z} ##, ##\frac{1}{6} = \frac{1}{y} + \frac{1}{z} \leq \frac{2}{y}##

##y \leq 12##

##\frac{1}{z} = \frac{y-6}{6y}##, ##z=\frac{6y}{y-6} = 6+\frac{36}{y-6}##

##7 \leq y \leq 12##.

##(x=6,y=7, z=42), (x=6,y=8, z=24),(x=6,y=9, z=18),(x=6,y=10, z=15),(x=6,y=12, z=12)##



if ##x=7## then ##\frac{1}{3} = \frac{1}{7} + \frac{1}{y} + \frac{1}{z} ##, ##\frac{4}{21} = \frac{1}{y} + \frac{1}{z} \leq \frac{2}{y}##

##y \leq 10##

##\frac{1}{z} = \frac{4y-21}{21y}##, ##z=\frac{21y}{4y-21} = 5+\frac{y+105}{4y-21}##

##7 \leq y \leq 10##.

##(x=7,y=7, z=21)##



if ##x=8## then ##\frac{1}{3} = \frac{1}{8} + \frac{1}{y} + \frac{1}{z} ##, ##\frac{5}{24} = \frac{1}{y} + \frac{1}{z} \leq \frac{2}{y}##

## y \leq 9##

##\frac{1}{z} = \frac{5y-24}{24y}##, ##z=\frac{24y}{5y-24} = 4+\frac{4y+96}{5y-24}##

##8 \leq y \leq 9##.

##(x=8,y=8, z=12)##



if ##x=9## then ##\frac{1}{3} = \frac{1}{9} + \frac{1}{y} + \frac{1}{z} ##, ##\frac{2}{9} = \frac{1}{y} + \frac{1}{z} \leq \frac{2}{y}##

##y=9##

##(x=9,y=9, z=9)##

There is ##21## solutions.
 
You said ##0<x<y<z##, so there are fewer than 21 solutions.
 
Yes, I solved
for ##x\ge y\ge z\ge 0##
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 60 ·
3
Replies
60
Views
12K
  • · Replies 61 ·
3
Replies
61
Views
12K