Yahoo Answers: Linear Homogeneous Recurrence - JunkYardDawg

Click For Summary
SUMMARY

The discussion focuses on solving the linear homogeneous recurrence relation defined by a_(n) = -2a_(n - 1) with the initial condition a_0 = 10. The explicit formula derived is a_n = 10(-2)^n, with the characteristic root identified as r = -2. The sum of the first n terms is given by S_n = (10/3)(1 - (-2)^n), and specifically, the sum of the first 10 terms is calculated as S_{10} = -3410.

PREREQUISITES
  • Understanding of linear homogeneous recurrence relations
  • Familiarity with characteristic equations
  • Knowledge of summation techniques in sequences
  • Basic algebra for manipulating equations
NEXT STEPS
  • Study the derivation of characteristic equations in recurrence relations
  • Explore advanced summation techniques for geometric series
  • Learn about variations of linear homogeneous recurrence relations
  • Investigate applications of recurrence relations in algorithm analysis
USEFUL FOR

Mathematicians, computer scientists, and students studying discrete mathematics or algorithm analysis will benefit from this discussion.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Recurrence relation help!?

For the recurrence relation where a_(n) = -2a_(n - 1) and a_0 = 10

Find:

A) An explicit formula in terms of n

B) The formula for the sum of the first n terms of the relation

C) The sum of the first 10 terms of the relation.

I have posted a link there to this thread so the OP can view my work.
 
Mathematics news on Phys.org
Hello JunkYardDawg,

A.) Let's rewrite the recursion as:

$$a_{n}+2a_{n-1}=0$$

From this, we can see the characteristic root is:

$$r=-2$$

And so the closed form is:

$$a_n=k(-2)^n$$

Now, using the given initial value, we may determine $k$:

$$a_0=k(-2)^0=k=10$$

Hence the closed form solution is:

$$a_n=10(-2)^n$$

B.) The sum of the first $n$ terms is:

$$S_{n}=10\sum_{k=0}^{n-1}\left((-2)^k \right)$$

If we multiply through by $-2$, then we may write:

$$-2S_{n}=10\sum_{k=0}^{n-1}\left((-2)^{k+1} \right)=S_{n}-10\left(1-(-2)^n \right)$$

This implies:

$$3S_{n}=10\left(1-(-2)^n \right)$$

Divide through by $3$:

$$S_{n}=\frac{10}{3}\left(1-(-2)^n \right)$$

C.) Using the formula from part B), we find:

$$S_{10}=\frac{10}{3}\left(1-(-2)^{10} \right)=-\frac{10230}{3}=-3410$$
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
3K