Dear NNunn, your question
- Is this the process by which nature drives the electron into quantized orbits? Apologies that I have not yet managed to work out how to put this as a quotation.
I have an answer to this (although a bit late since 2006!). It is also part of a preon model, although different to Vladimir's. I will give a short outline of my model after explaining orbital quantization.
The key is understanding that both energy and force are vectors. Currently obviously it is thought that energy is scalar. This derives from the different formulae used for energy and force in, for example, classical orbital systems. However, the missing part is that in quantum systems, there are what I term 'aligned' spins systems. That is the alignment of the electrons is parallel in each case, although the spin orbits are not. The aligned spins give a second, equal, inertial energy in such systems and have repulsive potential which balances out the attractive gravitational potential, leaving only the charge potential. In the case of a classical gravitational interaction, the spins of all the component particles (in eg planets, stars etc) are not aligned. So there is only one inertial component. So the difference in energies between quantum and classical equations is that the former has two sets of inertial energies and the latter only one. And there will be a scale between 1 and 2 depending on how 'aligned' the system is. So when considering force and energy, they can now be interpreted as exactly the same, just differentiated by an extra distance factor. So the inertial energy is an outward energy and the potential energy is an inward energy. When the two balance, the orbital is stable and has zero energy. What is currently ascribed as the orbital energy is just one side of the energy. So when electrons skip from orbital to orbital, they are moving from zero energy state to zero energy state. And in the same orbital, they have no energy so can be anywhere in that orbital. So there is no time component within stable orbitals. So electrons (and any other particle systems with aligned spins) are driven into orbitals by the need to move to the lowest energy. That lowest energy, for all orbitals, is zero, but the preference again is to move to the smallest 'balloon' - is the lowest inertial or potential value available.
The following is a simple outline of my preon model. If you want to see the whole story - where mass comes from, colour, why relativity, K parity (not) breaking etc please see the file 'Underlying Nature of Mechanics and Matter' at
www.pbtsm.co.uk
Ring Theory in a Nutshell
Assume the universe is composed only of Planck unit-sized volumes of nothing; but that each unit volume is separable into preon particle and anti-particle of equal and opposite Planck charges and Planck masses. Assume that like charges repel, unlike attract and that like masses attract and unlike chase to maintain separation and energy. Assume that as unit volumes are separated out, each preon starts spinning at the same rate.
Chasing will cause the formation of chains of alternating particle and anti-particle, each chasing the one in front and chased by the one behind. Chains will eventually form loops as heads catch tails. A loop of six is the strongest configuration, but loops of four will be formed more often and are dark matter to our normal 6-loop matter. Time starts when loops form and a loop of six is called a ring. Formation of rings at the Planck energy/Planck radius followed by physical interaction between rings could have expanded the rings to their present sizes very quickly, called inflation, without external motion of those rings.
If the orientation of the spinning axis of each preon is aligned with the chasing preon, there are only eight different electrostatic charge combinations possible for a ring of six preons when the preon spinning energy has a value of ± 1/6 qc3. The eight combinations represent the quarks and leptons. The rotational energy of the rings is currently called ‘spin ½ ‘ and is shown by the angular momentum h of each preon multiplied by the relativistic factor ½ , the ring frequency currently being ignored. The same internal energy is the ‘mass’ of the ring, being h multiplied by the frequency at which the ring rotates, less the rest mass energy, again giving ½ w. For each preon h = M v r inside the ring.
The constant ½ hq/(2p) is the same for all charged rings, due to charge and mass separately and shows that the muon and tau leptons are simply larger mass, smaller ring radius, electrons. The same is the case for families or ‘flavours’ of all rings.
The generation of magnetic moment due to both charge and mass enables a simple framework for the respective masses and magnetic moments of the proton and neutron.
The positioning of ± 1/6 q charges within the rings leads to symmetries. All charged leptons and some neutrinos are symmetric or ‘colourless’. All other rings are asymmetric, mostly with 3 and 2 fold asymmetries ie have ‘colour’. Stacking rings can balances out asymmetries between some rings, giving rise to 2 and 3 ring stack combinations that are overall symmetric or colourless. These combinations are always integer or zero electronic charge. Symmetric rings contain 3 fold symmetries, even though they are hidden, so electron and neutrino rings can exist in stacks. All isomers of each different ring have the same energy if they are the same ring radius.
A photon is a stack of particle and anti-particle ring, rotating in the same sense, where each preon has merged with its partner in the opposite ring to reform the original unit volume of space. Longer stacks include the proton and neutron of 7 rings and the stack framework enables the KoL and KoS to be the same mass and yet have different parities.
There are eight energies that exist within a ring, with four due to charge and four to mass, that balance each other. Of each, two are due to the size of the preon and its spinning frequency and the other two due to these and the velocity of the preon around the ring. The measurement of the preon velocity (ring frequency) by external observers is what drives relativity.
In order for all rings to be stable, regardless of the different energies present, the energy of a body due to the presence of charge and mass must be increased or reduced using a ‘field’ formula on a product basis, not a summation of potentials, which also eliminates infinities. Identical treatment of mass and charge energies in this way leads to all the accepted energies of particle systems from atomic to planetary. The introduction of the concept of ‘motional’ energy enables the formation of zero energy of motion and position states (ZEMPs) where QM energy levels are replicated as one side of each ZEMP. Without energy, there is no time related to these states even though they exist within a relativistic energy framework.
As can be seen, the concepts of particle mass, electric charge, particle spin, time, colour, and flavour acquire meaning only at the level of the composite systems. For a ring, of observed mass mr composed of preons of mass ± Mo each traveling at velocity vx inside the ring, Er = (gx –1) Mo c2 » ½ Mo vx2 = mr c2.
Hope you find it interesting.
Mike Lawrence