MHB Yes, $\cos \alpha x$ can be considered a $2\pi-$periodic function.

Click For Summary
The discussion focuses on finding the Fourier series for the function f(x) = 2x defined on the interval [-π, π] and confirming its correctness. Participants confirm that the Fourier coefficients a_n and b_n are calculated correctly, leading to the series representation. The conversation also addresses the periodic nature of the function cos(αx), affirming it as a 2π-periodic function and discussing how to derive an identity involving cot(απ). Ultimately, the participants encourage sharing results to further explore the identity and its proof.
Markov2
Messages
149
Reaction score
0
1) Find the Fourier series of the $2\pi-$periodic function defined by $f(x)=2x,\,-\pi\le x<\pi.$

2) Use the Fourier series of $f(x)=\cos \alpha x,$ with $0\ne\alpha\in\mathbb R$ to show that $\displaystyle\cot \alpha \pi = \frac{1}{\pi }\left( {\frac{1}{\alpha } - \sum\limits_{n = 1}^\infty {\frac{{2\alpha }}{{{n^2} - {\alpha ^2}}}} } \right).$

Attempts:

1) I have $a_n=\displaystyle\frac1\pi\int_{-\pi}^\pi 2x \cos (nx)\,dx$ and $b_n=\displaystyle\frac1\pi\int_{-\pi}^\pi 2x \sin (nx)\,dx,$ and $a_0=\displaystyle\frac1\pi\int_{-\pi}^\pi 2x\,dx,$ so the Fourier series is $\displaystyle\frac{{{a_0}}}{2} + \sum\limits_{n = 1}^\infty {\left( {{a_n}\cos (nx) + {b_n}\sin (nx)} \right)} .$ Is this correct?

2) Do I use the standard period for $\cos\alpha x$ ? I mean $-\pi\le x<\pi$ then calculate the series as did in (1)? However I don't see how to prove the identity.

Thanks.
 
Last edited:
Physics news on Phys.org
For (2), yes do a Fourier series expansion for $\cos \alpha x$ then set $x = \pi$. See how that goes.
 
Okay I can do that, but I don't see how to prove the identity though.
How about (1)? Is it correct?
 
Yes, (1) looks good. Post your result for the Fourier series for $\cos \alpha x$ so we can get to the result.
 
But do I consider $\cos\alpha x$ a $2\pi-$periodic function right?
 
There are probably loads of proofs of this online, but I do not want to cheat. Here is my attempt: Convexity says that $$f(\lambda a + (1-\lambda)b) \leq \lambda f(a) + (1-\lambda) f(b)$$ $$f(b + \lambda(a-b)) \leq f(b) + \lambda (f(a) - f(b))$$ We know from the intermediate value theorem that there exists a ##c \in (b,a)## such that $$\frac{f(a) - f(b)}{a-b} = f'(c).$$ Hence $$f(b + \lambda(a-b)) \leq f(b) + \lambda (a - b) f'(c))$$ $$\frac{f(b + \lambda(a-b)) - f(b)}{\lambda(a-b)}...

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K