Z, <U>, and C for Hagedorn Spectrum

  • Thread starter Thread starter dark_matter_is_neat
  • Start date Start date
  • Tags Tags
    Statisical mechanics
dark_matter_is_neat
Messages
34
Reaction score
1
Homework Statement
The Hagedorn Spectrum with E>=0 is ##\frac{dn}{dE} = \alpha E^{3} e^{B_{0}E}## where ##B_{0} = 1/kT_{0}## where ##T_{0}## is the Hagedorn Temperature. For ##T<T_{0}## determine the partition function Z, the average energy <U> and the specific heat C for the system.
Relevant Equations
##\frac{dn}{dE} = \alpha E^{3} e^{B_{0}E}##
So to get the partition function I do the integral ##\int \alpha E^{3} e^{(B_{0}-B)E} dE##, which substituting in ##/Delta B = B_{0} - B## is ##Z = \frac{ \alpha E^{3} e^{\Delta B E}}{\Delta B} - \frac{3 \alpha E^{2} e^{\Delta B}}{\Delta B^{2}} + \frac{6 \alpha E e^{\Delta B E}}{\Delta B ^{3}} - \frac{6 \alpha e^{\Delta B E}}{\Delta B ^{4}}##. To get <U> you just calculate ##- \frac{\partial ln(Z)}{\partial B}## and to get C you just calculate ##k \frac{\partial <U>}{ \partial T}##. The math gets pretty rough calculating <U> and gets especially rough calculating C and I'm wondering if there is a much less tedious way to get them or if I messed up calculating Z.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top