Zero factorial

  • I
  • Thread starter Pete Mcg
  • Start date
  • #36
Pete Mcg
18
4

Yes. I have seen this one. It's good.
 
  • #37
Pete Mcg
18
4
Thank you. You have been very helpful.
 
  • #39
Pete Mcg
18
4
Thank you so much!It all makes sense now...
My God! I've just had a peek at Book Of Proof and it's marvellous. Can I write you into my will?
 
  • #40
36,668
8,671
please correct me if I'm wrong. 0!=1 is a 'definition' in the same way that 1=1 or any other self evident statement is a definition and 'You do no prove a definition in Mathematics'.
1 = 1 is not a definition. In general for all kinds of definitions, including words found in a dictionary, you can't define something in terms of itself.
The equation 1 = 1 is an example of the reflexive property of the equality relation. This property says that any number is equal to itself. Other relations, such as < or >, do not have this property. For example, ##5 \nless 5## and ##2 \ngtr 2##.
 
Last edited:
  • Like
Likes Pete Mcg, sysprog and PeroK
  • #41
MidgetDwarf
1,392
549
My God! I've just had a peek at Book Of Proof and it's marvellous. Can I write you into my will?
Yes :woot:.
 
  • #42
Baluncore
Science Advisor
12,050
6,169
Throughout this thread I see; n! = n(n-1)!
But that is sloppy since the complete recursive definition of factorial is;
n! = n(n-1)! for n≥1 and 0!=1
Everything here is a definition.
Do not attempt to use the definition as a self referential proof of itself.
 
  • Skeptical
  • Like
Likes Pete Mcg and PeroK
  • #43
PeroK
Science Advisor
Homework Helper
Insights Author
Gold Member
2022 Award
23,745
15,354
:welcome:

##0! = 1## (by definition)

##n! = n(n-1)!## (for ##n \ge 1##)
You obviously failed to see post #2.
 
  • #44
Baluncore
Science Advisor
12,050
6,169
@PeroK
I did see post #2. You got it right, but most of the thread ignores the complete definition and so becomes incomplete or self-referential.
 
  • Like
Likes Lord Jestocost
  • #45
Frabjous
Gold Member
980
1,052
@PeroK
I did see post #2. You got it right, but most of the thread ignores the complete definition and so becomes incomplete or self-referential.
I apologize for not meeting your standards.
 
  • #46
Baluncore
Science Advisor
12,050
6,169
I apologize for not meeting your standards.
No apology is necessary in hindsight if it gets people to think. My standards are lower than yours.

This interesting thread gave me the uncanny feeling that we were contemplating the proof of a definition, from inside a fishbowl, while looking at our different reflections in the curved wall.

Meanwhile some find the difference between antimony and an antinomy.
 
  • #47
sysprog
2,613
1,783
I apologize for not meeting your standards.
Hmm ##\dots -## here's an observation not especially related to meeting standards, but at least ancillarily related to this thread topic: computationally, for e.g. card-deck-sized non-zero factorials, e.g. between euchre, poker, and pinochle or canasta sized decks, an iterative method is a little faster than recursive, but for zero, there's no comparison necessary between those methods, because we just hardcode zero factorial to 1 ##-## it's so by definition, as @PeroK said, and reasonably so, as @fresh_42, @PeroK, @Baluncore, @Mark44, and maybe others, explained.
 
  • #48
Baluncore
Science Advisor
12,050
6,169
@sysprog Is the definition of n! iterative or recursive ?
I think you are saying that, even if I knew the difference between an iterative and a recursive definition, I could not apply either to the definition of 0!
 
  • #49
pbuk
Science Advisor
Homework Helper
Gold Member
4,029
2,361
Is the definition of n! iterative or recursive ?
Iterative (or explicit) definition:
$$ n! = \begin{cases}
\prod\limits_{k=1}^n k, & \text{if}\ n>0 \\
1, & \text{if}\ n = 0
\end{cases}
$$
Recursive (or implicit) definition:
$$ n! = \begin{cases}
n(n-1)! , & \text{if}\ n>0 \\
1, & \text{if}\ n = 0
\end{cases}
$$
So ## 0! ## is defined identically in each case.
 
  • Like
Likes Klystron, sysprog and Baluncore
  • #50
jbriggs444
Science Advisor
Homework Helper
11,573
6,221
Or simply $$n!=\prod\limits_{k=1}^n k$$ with the understanding that a product indexed from one to zero is the empty product which is, by definition, the neutral element for multiplication.

The meaning of the empty product was already belabored up-thread.

Edit:

In the world of computing, the Ada programming language makes explicit the notion of an empty array slice such as a[1:0]. If the initial index is one greater than the final index, the result is explicitly the empty array and no bounds checking on either index is performed.

In VAX Fortran-77 the same would work and was needed to create an empty string, but one needed to compile with bounds checking disabled.
 
Last edited:
  • #52
Pete Mcg
18
4
1 = 1 is not a definition. In general for all kinds of definitions, including words found in a dictionary, you can't define something in terms of itself.
The equation 1 = 1 is an example of the reflexive property of the equality relation. This property says that any number is equal to itself. Other relations, such as < or >, do not have this property. For example, ##5 \nless 5## and ##2 \ngtr 2##.
Thank you for that. As stated previously in my original post, I'm not a Mathematician and am learning, every little bit counts and I appreciate your and everybody's input . (Learned today that you when you multiply a negative number by a negative number the result is a positive number - they didn't teach this in Maths @ school I went to so it took a bit of getting my head round it - at first I went HUH?? but it's starting to makes sense.) This a new world to me, good fun -talk about fun - this Godel incompleteness thing has got me intrigued!
As in learning any new 'language' one needs to understand the rules and conventions (another thing learned today was BOMDAS / PEMDAS)Even the supposedly simplest thing like 'number' has a myriad of different 'meanings' - natural numbers, rational numbers, irrational etc etc etc ...Anyway, enough of my rambling. Cheers.
 
  • #53
fresh_42
Mentor
Insights Author
2022 Award
17,645
18,308
they didn't teach this in Maths @ school I went to so it took a bit of getting my head round it - at first I went HUH??
A product is an area. An area is oriented. It makes a difference whether you circle it clockwise or counter-clockwise, one is noted as a positive number, the other one by a negative number. Which is which is up to you. The lines are oriented, too, up and down, left and right. Now ##(+1)\cdot (+1)## has the same orientation as ##(-1)\cdot (-1),## and ##(+1)\cdot (-1)## is of opposite orientation.
 
  • #54
jbriggs444
Science Advisor
Homework Helper
11,573
6,221
Another motivation is the distributive law: ##a \times (b+c) = a \times b + a \times c##

Say you have ##-2 \times (1-1)## then clearly that should evaluate as ##-2 \times 0 = 0##. If we apply the distributive law, it should be equal to ##( -2 \times 1 ) + ( -2 \times -1 )##. But if a negative times a negative is a negative, that formula evaluates as ##-2 + -2## for a result of ##-4## which is wrong.

So if a negative times a negative yields a negative, the distributive law breaks.
 
  • #55
36,668
8,671
(Learned today that you when you multiply a negative number by a negative number the result is a positive number - they didn't teach this in Maths @ school I went to so it took a bit of getting my head round it
Sorry to hear that it wasn't taught at your school. My first exposure to signed-number arithmetic was in ninth grade, back when I was 14.
 
Last edited:
  • #56
pbuk
Science Advisor
Homework Helper
Gold Member
4,029
2,361
Another motivation is the distributive law: ##a \times (b+c) = a \times b + a \times c##

So if a negative times a negative yields a negative, the distributive law breaks.
If a negative times a negative yields a negative there are no multiplicative inverses for negative numbers so we haven't even got a group.
 

Suggested for: Zero factorial

  • Last Post
Replies
4
Views
435
  • Last Post
Replies
1
Views
394
Replies
4
Views
583
  • Last Post
Replies
6
Views
427
  • Last Post
Replies
4
Views
548
Replies
12
Views
776
  • Last Post
Replies
2
Views
501
  • Last Post
Replies
17
Views
2K
  • Last Post
Replies
1
Views
564
Replies
3
Views
569
Top